

Groundwater Quality Assessment for Laamu Atoll Isdhoo, Kalaidhoo, Gan and Dhanbidhoo

DOCUMENT CONTROL SHEET

Project Name:	Ground Water Quality Assessment for Laamu Atoll Isdhoo, Kalaidhoo, Gan and Dhanbidhoo
Document Name:	Water Quality Assessment Report
Issued To:	Ministry of Climate Change, Environment and Energy Green Building, Handhuvaree Hingun, Maafannu, Male', 20392, Republic of Maldives.
Issued By:	Epoch Associates Pvt Ltd 3 rd Floor, G. Rosary West Husnuheena Magu, Male', Maldives
Issued Date:	21/07/2024
Ref. No:	EP/INF-WS/2023/67/CDR-P00/012

Rev.	Status	Issue Date	Description	Name/Initial		Signature			
Document No:									
02	Report	21/07/2024	First Issue	Author(s)	FIA, MSS ¹ , AMMS				
02	Корон	21/07/2024	1110110000	Reviewed by Approved by	MSS ²				
					MSS ²				
Distrib	oution								
Сору	No.	Revision		Issue Date	Issued to				
	02		02	21/07/2024	Ministry of Clin Environment a	· ·			

Table of Contents

List of	f Tables	iv
List of	f Figures	v
1.	Executive Summary	1
2.	Introduction	2
3.	Literature Review and Desk Study	3
4.	Technical Approach and Methodology	17
5.	Groundwater Quality Results	23
6.	Discussion	37
7.	Conclusion and Recommendations	49
8.	References	50
9.	ANNEXES	52

List of Tables

Table 3-1: Summary of average concentration or value of groundwater quality from the baseline as	
(1/2)	
Table 3-2: Summary of average concentration or value of groundwater quality from the baseline as	ssessment
(2/2)	
Table 3-3: Summary of groundwater quality from the baseline assessment	
Table 3-4: Summary of average concentration or value of groundwater parameters tested in rev	iewed EIA
reports (1/2)	8
Table 3-5: Summary of average concentration or value of groundwater parameters tested in rev	
reports (2/2)	
Table 3-6: Descriptive statistics to monitor variability in E. coli count among islands of Laamu Ato	II. Source:
(Hajare et al., 2021)	10
Table 3-7: Water quality standards of bacterial indicators for food and non-food crop irrigation in Uni	ted States
(Epa et al., 2004; Jeong et al., 2016)	13
Table 3-8: Recommended minimum verification monitoring of microbial performance targets for w	astewater
use in agriculture (Jeong et al., 2016; World Health Organization., 2006)	14
Table 3-9: Guidelines for interpretation of water quality for irrigation (Epa et al., 2004)	
Table 3-10: Recommended water quality criteria for irrigation (Epa et al., 2004)	16
Table 4-1: Microbiological Test Details	22
Table 5-1: Statistical summary of groundwater physiochemical parameters in L. Gan (1/3)	23
Table 5-2: Statistical summary of groundwater physiochemical parameters in L. Gan (2/3)	23
Table 5-3: Statistical summary of groundwater physiochemical parameters in L. Gan (3/3)	24
Table 5-4: Physiochemical water parameters in L. Gan	25
Table 5-5: Statistical summary of groundwater physiochemical parameters in L. Isdhoo (1/3)	26
Table 5-6: Statistical summary of groundwater physiochemical parameters in L. Isdhoo (2/3)	26
Table 5-7: Statistical summary of groundwater physiochemical parameters in L. Isdhoo (3/3)	26
Table 5-8: Physiochemical water parameters in L. Isdhoo	28
Table 5-9: Statistical summary of groundwater physiochemical parameters in L. Kalaidhoo (1/3)	29
Table 5-10: Statistical summary of groundwater physiochemical parameters in L. Kalaidhoo (2/3)	29
Table 5-11: Statistical summary of groundwater physiochemical parameters in L. Kalaidhoo (3/3)	29
Table 5-12: Physiochemical water parameters in L. Kalaidhoo	31
Table 5-13: Statistical summary of groundwater physiochemical parameters in L. Dhanbidhoo (1/3) \dots	32
Table 5-14: Statistical summary of groundwater physiochemical parameters in L. Dhanbidhoo (2/3) \dots	32
Table 5-15: Statistical summary of groundwater physiochemical parameters in L. Dhanbidhoo (3/3) \dots	32
Table 5-16: Physiochemical water parameters in L. Dhanbidhoo	34
Table 5-17: Groundwater microbiological parameters in L. Gan	35
Table 5-18: Groundwater microbiological parameters in L. Isdhoo	35
Table 5-19: Groundwater microbiological parameters in L. Kalaidhoo	36
Table 5-20: Groundwater microbiological parameters in L. Dhanbidhoo	36
Table 6-1: Groundwater quality results for samples taken close to pump stations in L. Gan taken in I	November
2022 (Fenaka, 2023)	37
Table 6-2: Groundwater quality results for samples taken close to pump stations in L. Isdhoo taken in I	November
2022 (Fenaka, 2023)	40

Table 6-3: Groundwater quality results for samples taken close to pump stations in L. Kalaidh	oo taken in
November 2022 (Fenaka, 2023)	43
Table 6-4: Groundwater quality results for samples taken close to pump stations in L. Dhanbidh	noo taken in
November 2022	46

List of Figures

Figure 3.1: Fertilizers and Pesticides used in Laamu Atoll. Source: (Ministry of Environment Climate	Change and
Technology, 2023)	4
Figure 3.2: Quantity of organic and inorganic fertilizers imported to the Maldives from 2017 to 2021	. (Ministry of
Environment Climate Change and Technology, 2022)	5
Figure 4.1: Groundwater sampling by dipping YSI ProDSS probes directly into the well	17
Figure 4.2: Collecting groundwater samples directly from well using custom-made bailer	20
Figure 4.3: Labelled sampling bottle	21
Figure 4.4: Sample storage cool boxes	21
Figure 6.1: Gan Sewerage System Locations Map (Fenaka, 2023)	38
Figure 6.2: Isdhoo Sewerage System Locations	41
Figure 6.3: L. Kalaidhoo Sewerage System Locations	44
Figure 6.4: Dhanbidhoo Sewerage System Locations	47

1. Executive Summary

The Water Quality Assessment Report is a deliverable under the ENDhERI Project to undertake "Ground Water Quality Assessment for Laamu Atoll Isdhoo, Kalaidhoo, Gan and Dhanbidhoo" as per the Terms of Requirements (TOR) (IUL)438-ENV/438/2023/234.

This report includes the literature review of other baseline assessment reports conducted in Laamu Atoll and the Maldives. It also showcased studies related to groundwater and environmental impact reports in Laamu Atoll. Moreover, a few regulations and guidelines for water quality were outlined.

The sampling methodology that was followed was described, which includes the parameters that was tested, the procedure to collect groundwater samples from taps and wells, the procedures followed to properly label and document the samples and the storage requirements for samples.

Groundwater sampling was carried out in L. Gan, L. Isdhoo, L. Kalaidhoo and L. Dhanbidhoo from 5 – 7th February 2024, and results from each island were presented in this report. Additionally, the physiochemical and microbiological aspects of the samples from each island were discussed with comparison to previous groundwater monitoring data. This report also provided recommendations for future water quality assessments.

This report concluded that the physiochemical parameters from all islands were at an acceptable range. However, the microbiological contamination from all samples were high which indicates that groundwater should be disinfected before use. This is a majorly significant finding for mosques where control samples were taken, and where groundwater is used for ablution purposes. The major limitation of this project was that pesticides were not tested.

It was recommended that for future groundwater assessments it is crucial to include pesticides, E. Coli testing and dictate the number of samples to be tested, based on the size of the island. It is also important to inform relevant stakeholders regarding water regulations to enforce continuous monitoring of the freshwater lens.

2. Introduction

The Maldives, a small island nation, faces challenges in protecting its fragile environment and balancing food security. Agriculture contributes only minimally to the economy but plays a crucial role in livelihoods. Increased food demand and nutrient-poor soil leads to heavy use of imported agrochemicals, raising concerns about human health and environmental pollution.

In response to this challenge among other environmental challenges, the Enhancing National Development through Environmentally Resilient Islands (ENDhERI) project has been established under the Ministry of Climate Change, Environment and Energy (MoCCEE). This project has a duration of four years, starting from December 2020, and aiming for completion by September 2024. This project has objectives of enhancing reef protection, resilience and ecosystem recovery by reducing development impacts in a selected project site of the Maldives, enabled for replication nationally through public awareness and integrating the values of marine biodiversity and other natural capital in national accounting. This project has outcomes of supporting sustainable, environment-friendly agricultural practices, building local capacity and awareness on impacts of agrochemicals on environment and human health, and supporting transformation of local agricultural practices to more environmentally sustainable and health-conscious methods.

In line with these objectives and outcomes, MoCCEE has contracted Epoch Associates for the assignment "Ground Water Quality Assessment for Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo". This assignment aims to assess the impact of agrochemical usage on groundwater and build a groundwater baseline in four highly impacted islands of Laamu Atoll and provide groundwater sampling training to project island councils and ministry officials. This water sampling works report is a deliverable under the assignment and will detail the works carried out on site and the sampling methods that were used.

The water sampling and training was carried out through 5th-7th February 2024, and it was conducted by Epoch Associates Private Limited. The 4 selected inhabited islands were recognized as the most highly impacted agricultural islands within Laamu Atoll.

This report includes other studies and publications such as certain literatures which provide relevance to the groundwater monitoring and assessment within the Maldives. The sampling methodology that was followed will be described. This report will discuss the results of groundwater sampling from each island. The results will be compared with values from previous groundwater monitoring within these islands.

3. Literature Review and Desk Study

A careful review of all available literature was made to gather critical information pertaining to the study area and to determine whether any of the historical studies overlap with the intended work.

Literature review covered existing studies undertaken for all of the islands with respect to agricultural activities and practices, groundwater quality, and groundwater contamination. The literature review included published reports and documents by the government, Environmental Impact Assessment (EIA) reports published for the study islands, government policies and masterplans, published studies, and review of institutional framework. The literature reviewed for this study, which was also presented in the Inception phase, is updated and presented below:

3.1. Baseline Assessment Reports

 Baseline Report on Agricultural Practices in Laamu Atoll (Ministry of Environment Climate Change and Technology, 2023)

The ENDhERI project's baseline assessment aimed to understand the status of agricultural practices in Laamu Atoll, establishing a reference point to identify needs for supporting the local community's agriculture under the project. The study examined 11 inhabited Laamu islands using quantitative data, literature and stakeholder consultations. Agriculture is the main economic activity and livelihood source on the larger islands of Gan, Isdhoo and Kalaidhoo.

The report detailed the farming population, land resources, practices, crops and agrochemical use, while outlining key challenges. Greatest number of farmers are within Gan (33%), Isdhoo (30%), Kalaidhoo (19%) and Dhanbidhoo (6%).

The data revealed that the predominant agricultural activity on the inhabited islands of Laamu Atoll is home gardening, followed by homestead farming and commercial inorganic and organic farming practices.

The report indicates that key challenges include unsustainable practices like unregulated fertilizers and pesticides, impacting health and the environment. Fertilizers and Pesticides commonly used in Laamu Atoll are shown in Figure 3.1. Invasive species are also a reported concern for Laamu and other atoll farmers. Financial constraints and high investment costs also inhibit the expansion of sustainable farming practices on islands in Laamu atoll.

The report indicates that soils found on the Maldivian islands are notably deficient in the essential nutrients required for optimal agricultural crop growth. This necessitates significant use of agrochemicals to enrich the soil and achieve better yields. The soil exhibits very high infiltration rates, resulting in low water-holding capacity. Due to excessive calcium content, the soil pH ranges from 8.0 to 8.8, with an average of 8.5. The soils are generally lacking in nitrogen and potassium due to excessive leaching, as well as deficient in several micronutrients such as iron, manganese, copper, boron, and zinc as a consequence of the high pH levels.

Pesticides and Insecticides					
Name	Main use	Volume	Market Price		
Cypermathrin	Used to spray to worms	250ml	170		
Senora		100ml	350		
Senora	Insecticide	175ml	435		
Prodhan Insecticide	Insecticide	250ml	230		
Prodhan Insecticide	Insecticide	500ml	320		
Starkle-G	Insecticide	1kg	295		
Prefenos (C-Cron)	Insecticide		525		
Fungrang (copper hydroxide)	Helps leaves to gain protein and growth	500g	235		
N+Mancozeb (Maaka)	Contact fungicide	50g	180		
Besilas Thrinjiensis (BT)	Control worms	100g	185		
Neemaxe	Insecticide	1ltr			
Mapa Diazinon 60	Insecticide	100ml	80		
Mapa Diazinon 60	Insecticide	1 ltr	420		
Clipper 20SL	Insecticide	1 ltr	350		
Asgurd	Insecticide	1 ltr	520		
Abamectin (Rihakuru beys)	Insecticide	100ml	85		
Abamectin (Rihakuru beys)	Insecticide	1 ltr	440		
Acetamiprid	Insecticide	1 ltr	490		
Folicur Tebuconazole	Lack of iron in leaves, nutrient difficiency	250ml	275		
Imidiclopreed	sed for pesticides and palnt growth difficien	100ml	400		
Dhan Preet	Koodi beys	100g	115		
Dhan Preet	Koodi beys	500g	600		
Pager	Koodi beys	250g	430		
Thiram	Used for fungus	100g	135		
Thiram	Used for fungus	500g	465		
Cyperguard 25 EC	Insecticide	l ltr	520		
Antracol	Contact fungicide	100g	90		

Fertilizers						
Name	Main use	Volume	Market Price			
Sulphur	Helps plant growth and greenerey	1kg	225			
Sulphur (BK)	Helps plant growth and greenerey	1kg	170			
Sulphur	Helps plant growth and greenerey	500g	145			
Maxicrop	Foliar Nutrient	400ml	170			
Floral 20-20-20	Plant growth at all stages	2.5kg	300			
Greenleaf 12.48.8	Foliar fertiliser promoting of flowering		135			
Yaara Mila 8.24.24	Plant fetlilizer (oh kaana)	1kg	45			
NPK 12.12.36 (Florin)	Plant fetlilizer (oh kaana)	1kg	75			
Yaara Mila 12.11.18	Plant fetlilizer (oh kaana)	1kg	55			
NPK 27.6.6	Plant fetlilizer (oh kaana)	1kg	35			
Neu NPK 12.11.18	Plant fetlilizer (oh kaana)	1kg	30			
Ammonium	Plant fertilizer	1kg	35			
Potasium	Plant fertilizer	1kg	35			
Neu NPK 12.12.17	Plant fetlilizer (oh kaana)	1kg	30			
TSP	Plant fertilizer	1kg	55			

Figure 3.1: Fertilizers and Pesticides used in Laamu Atoll. Source: (Ministry of Environment Climate Change and Technology, 2023)

 Baseline Assessment on National Use of Chemicals and Associated Risks 2022 (Ministry of Environment Climate Change and Technology, 2022)

This assessment states that fertilizers and pesticides are the primary chemical applications in agriculture. Both organic and inorganic fertilizers are extensively used in the agricultural sector of the Maldives. Illustrated in

Figure 3.2 is the quantity of organic and inorganic fertilizer groups, alongside the total imported fertilizer quantity. This assessment recorded that over a five-year span, there was a consistent increase in the import of organic fertilizers, surpassing the import of inorganic ones until 2020. The overall import of inorganic fertilizers remained steady throughout this period. In 2021, India emerged as the primary fertilizer supplier, contributing to 57% of the total imports.

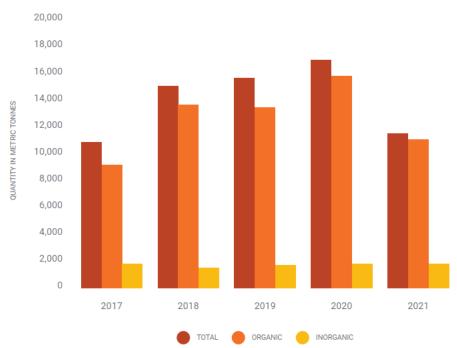


Figure 3.2: Quantity of organic and inorganic fertilizers imported to the Maldives from 2017 to 2021 (Ministry of Environment Climate Change and Technology, 2022)

As per this report, during 2021, the predominant chemical fertilizers imported comprised nitrogenous fertilizers and NPK fertilizers which are nitrogen (N), phosphorus (P), and potassium (K), enriched with microelements. The cumulative total weight of chemical fertilizers imported summed up to 1,393.70 tonnes.

This report documents that between 2017 and 2021, a range of pesticides falling into categories like fungicides, herbicides, anti-sprouting agents, plant-growth regulators, rodenticides, insecticides, and disinfectants were brought into the country in varying amounts. Most imported pesticides in the Maldives were insecticides, displaying a steady increase from 229.63 tonnes to 1,292.54 tonnes over the five-year span.

 Baseline Assessment Report for Groundwater Resource Management and Aquifer Protection in Maldives (Ministry of Environment, 2020)

The Baseline Assessment for Groundwater Resource Management and Aquifer Protection in Maldives was conducted in 13 islands in 2019, and report was published by Ministry of Environment (2020). This report presented the results of a robust assessment on the impacts on the freshwater lens based on geo-physical, hydrological, and social investigations. The data and methodologies published in this report were taken as a reference to plan the groundwater sampling surveys. A summary of groundwater quality from the baseline assessment is shown in Table 3-1 and Table 3-2. High Electrical Conductivity (EC in µS/cm) and Salinity (PPT) were recorded mostly in shoreline samples presumably due to pumping induced seawater intrusion with centrally located wells recording lower Electrical Conductivity (EC in µS/cm) and Salinity (PPT).

The results of this study indicate that the freshwater aquifers in islands with high population densities were found to be highly stressed and overexploited, although no deterioration of the freshwater lens specifically from highly agricultural islands such as HDh. Nolhivaranfaru was observed. The microbiological investigations of this study indicated that groundwater aquifers in all 13 islands are exposed to faecal contamination, which is caused by effluent from septic tanks.

Table 3-1: Summary of average concentration or value of groundwater quality from the baseline assessment (1/2)

	EC (μS/cm)	Salinity (PSU)	TDS (mg/L)	рН	Turbidity (NTU)
HA. Utheem	1744 ± 2545	0.812 ± 1.29	1014 ± 1503	7.54 ± 0.261	0.05 ± 0.0514
HDh. Nolhivaranfaru	2240 ± 3342	1.27 ± 2.01	1332 ± 1947	7.61 ± 0.3	0.683 ± 1.29
Sh. Funadhoo	7548 ± 9332	3.84 ± 5.15	4371 ± 5400	7.47 ± 0.192	0.234 ± 0.411
N. Henbadhoo	4240 ± 1576	1.99 ± 0.757	2468 ± 887	7.31 ± 0.295	0.213 ± 0.247
R. Maduvvari	3690 ± 4060	1.77 ± 2.11	2152 ± 2341	7.47 ± 0.281	0.366 ± 0.343
B. Dharavandhoo	1009 ± 384	0.442 ± 0.179	589 ± 224	7.45 ± 0.272	1.01 ± 1.13
AA. Bodufulhadhoo	6183 ± 3556	3 ± 1.82	3594 ± 2077	7.43 ± 0.158	3.11 ± 2.63
ADh. Dhigurah	2726 ± 4237	2.58 ± 6.12	1565 ± 2444	7.5 ± 0.2	1.37 ± 2.61
M. Raimandhoo	5039 ± 7990	2.7 ± 4.66	3072 ± 4931	7.69 ± 0.384	1.02 ± 0.705
Th. Kinbidhoo	939 ± 257	0.418 ± 0.123	559 ± 157	7.45 ± 0.14	524 ± 1355
Dh. Meedhoo	888 ± 484	0.399 ± 0.225	530 ± 288	7.76 ± 0.36	27.7 ± 68.5
GA. Kon'dey	637 ± 115	0.278 ± 0.0525	377 ± 70.5	7.56 ± 0.368	2.78 ± 6.37
GDh. Fiyoari	998 ± 388	0.439 ± 0.176	587 ± 226	7.49 ± 0.332	1.8 ± 2.52

Table 3-2: Summary of average concentration or value of groundwater quality from the baseline assessment (2/2)

	DO (mg/L)	Nitrates (mg/L-NO3)	Ammonia (mg/L)	Phosphates (mg/L)
HA. Utheem	5.52 ± 1.79	33.9 ± 25.4	2.93 ± 4.01	0.166 ± 0.118
HDh. Nolhivaranfaru	4.434 ± 2.61	39.2 ± 34.3	6.72 ± 7.98	0.244 ± 0.2
Sh. Funadhoo	6.72 ± 0.551	41.4 ± 28.7	7.49 ± 9.61	0.207 ± 0.17
N. Henbadhoo	2.21 ± 1.18	34.3 ± 10.1	12.9 ± 7.89	0.359 ± 0.271
R. Maduvvari	3.07 ± 1.16	49.1 ± 33.1	6.16 ± 12.5	0.338 ± 0.22
B. Dharavandhoo	2.67 ± 1.54	25.1 ± 20.1	1.43 ± 1.19	0.263 ± 0.34
AA. Bodufulhadhoo	3.35 ± 1.71	18.4 ± 8.8	0.31 ± 0.303	0.269 ± 0.201
ADh. Dhigurah	2.55 ± 1.47	59 ± 53.6	0.537 ± 1.44	0.236 ± 0.173
M. Raimandhoo	2.58 ± 1.57	25.5 ± 30.7	5.14 ± 9.24	0.237 ± 0.212
Th. Kinbidhoo	3.42 ± 1.17	10.7 ± 6.21	1.18 ± 1.1	0.452 ± 0.606
Dh. Meedhoo	3.6 ± 2.11	8.53 ± 6.42	1.07 ± 1.39	0.311 ± 0.273
GA. Kon'dey	4.23 ± 5.44	13.5 ± 13.1	0.993 ± 2.22	0.218 ± 0.0853
GDh. Fiyoari	3.19 ± 2.02	12 ± 14.5	3.62 ± 7.33	0.345 ± 0.331

Note: EC=Electrical Conductivity, TDS=Total Dissolved Solids, DO=Dissolved Oxygen

Baseline Assessment Report for Assessing Groundwater Resources and Design of Aquifer Recharge Systems in Selected Islands of Maldives – Lot 02 (Ministry of Environment, 2023)

The Baseline Assessment for Assessing Groundwater Resources and Design of Aquifer Recharge Systems in Selected Islands of Maldives was conducted in 6 islands in 2021, and report published by Ministry of Environment, Climate Change and Technology (2022). This report presented the results of a robust assessment on the impacts on the freshwater lens based on geo-physical, hydrological, and social investigations. The data and methodologies published in this report were taken as a reference to plan the groundwater sampling surveys. A summary of groundwater quality from the baseline assessment is shown in Table 3-3.

From these six (06) islands, Th. Vandhoo shows the highest average of Electrical Conductivity (EC) (μ S/cm) of 1,039 μ S/cm which is still within the acceptable limit for potable water of 1,500 μ S/cm. Th. Omadhoo and Th. Gaadhiffushi Islands had EC values within the acceptable range for all the samples. Average Ammonia concentration of the tested samples remained within the acceptable limit of 1.5 mg/L.

It was recorded in this report that each island shows individual characteristics compared to water quality parameters and hydraulic conductivity parameters. This report identified that the main reasons for the critical variation on EC, Ammonia, Nitrate and Phosphates are higher extraction of groundwater, leaching on nitrate based fertilizers, coral stockpiling within the island area, sea water flooding, and contaminants from anthropogenic activities. Agricultural areas in Sh. Foakaidhoo, Th. Vandhoo, and Th. Kandoodhoo islands were recorded with an increase of EC, Ammonia, and Nitrate, which could be due to higher extraction of groundwater, leaching of nitrate-based fertilizers, etc.

Table 3-3: Summary of groundwater quality from the baseline assessment

	Th. Kandoodhoo	Th. Vandhoo	Th. Omadhoo	Th. Gaadhiffushi	Sh. Foakaidhoo	Th. Dhiyamigili
EC (μS/cm)	791 ± 668	1039 ± 800	524 ± 172	641 ± 294	896 ± 366	966 ± 723
рН	7.69 ± 0.223	7.65 ± 0.244	7.58 ± 0.342	7.56 ± 0.308	7.44 ± 0.336	7.63 ± 0.265
Turbidity (NTU)	7.7 ± 38.3	96.2 ± 511	0.426 ± 1.12	1.65 ± 4.54	0.291 ± 0.347	32.8 ± 156
DO (ppm)	4.09 ± 1.76	4.38 ± 1.41	3.57 ± 2.03	4.15 ± 9.54	3.27 ± 1.5	2.77 ± 1.8
Salinity (PSU)	0.424 ± 0.375	2.44 ± 7.05	0.00252 ± 0.0843	0.302 ± 0.153	0.843 ± 2.62	0.746 ± 1.85
Nitrates (mg/L)	8.94 ± 15.1	3.05 ± 5.55	4.65 ± 7.95	19.4 ± 34.3	14.4 ± 21.9	4.8 ± 7.96
Ammonia (mg/L)	0.0578 ± 0.178	0.263 ± 0.405	0.406 ± 1.282	0.289 ± 0.842	0.23 ± 0.88	0.78 ± 1.23
Phosphates (mg/L)	0.474 ± 0.807	0.228 ± 0.303	0.248 ± 0.197	0.258 ± 0.368	0.366 ± 0.344	0.53 ± 0.575

Note: EC=Electrical Conductivity, DO=Dissolved Oxygen

3.2. Environmental Impact Reports (EIAs)

From the Environmental Protection Authority (EPA) Public drive available online, all the Environmental Impact Assessment (EIA) reports published for the four project islands were shortlisted and reviewed. EIA reports containing information about groundwater environment were shortlisted. EIA reports from 2015 to 2023 were available on the public domain. Six EIA reports were shortlisted as follows:

- EIA for Proposed Road Development in Gan, Laamu Atoll (2023)
- EIA for the proposed Causeway Development between Kalaidhoo and Dhanbidhoo, Laamu Atoll (2023)
- EIA for the Proposed Establishment of water network in L. Gan, L. Isdhoo, L. Kalaidhoo, L. Maamendhoo (2021)
- EIA for the Proposed Constructions of water Supply Facility at L. Dhanbidhoo (2021)
- EIA for the Proposed Sea Cucumber Development Project at L. Gan (2017)
- EIA for the Proposed Construction of Island Waste Management Centre at Dhanbidhoo, Laamu Atoll (2017)

A total list of all the groundwater parameters tested with sampling dates and results are presented in Annex 1 – Groundwater quality testing results from review of EIA Reports (2015 – 2023). This annex also contains annual averages of relevant tested parameters for all the years available. The results from this review are summarized and presented in Table 3-4 and Table 3-5, in the form of average values and concentration.

Table 3-4: Summary of average concentration or value of groundwater parameters tested in reviewed EIA reports (1/2)

	рН	Electrical Conductivity (μS/cm)	Salinity (ppt)	Total Dissolved Solids (mg/L)	Dissolved Oxygen (mg/L)
Dhanbidhoo	7.71	634	0.309	313	4.1
Gan	7.46	906	0.449	454	5.47
Isdhoo	7.33	601	0.295	301	-
Kalaidhoo	7.51	831	0.408	415	-

Table 3-5: Summary of average concentration or value of groundwater parameters tested in reviewed EIA reports (2/2)

	Nitrate (mg/L)	Sulfate (mg/L)	Phosphate (mg/L)	BOD (mg/L)	COD (mg/L)
Dhanbidhoo	0.6	-	-	-	-
Gan	8.08	31.6	0.228	5.8	19.9
Isdhoo	-	-	-	-	-
Kalaidhoo	-	-	-	-	-

Note: BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand

3.3. Published Studies

Effects of Fertilization to Groundwater Contamination (Muian & Kuan, 2022)

This study focused on the impact of fertilization on groundwater contamination in a paddy field on Langkawi Island in Malaysia. Agricultural activities, particularly the discharge of agrochemicals into water bodies, are a major source of groundwater pollution. Nitrate, a common contaminant from agricultural areas, was specifically examined. The researchers developed a numerical model to simulate nutrient transport, mimicking fertilization in different seasonal conditions.

The study found that in short-term simulations (less than a year), the extent and transport of the nutrient plume were not notably significant. However, the concentration of the nutrient took around 5 years to decrease to less than 10% of its initial concentration at the release site. Even after 30 years, the relative concentration of the dispersed nutrient plume remained at around 16.7% under low flow conditions and 8.6% under high flow conditions.

The results emphasized the importance of aligning fertilizer usage with crop requirements to minimize nitrate leaching and subsequent groundwater contamination. Matching fertilization practices to actual crop needs can significantly reduce the cumulative impact of nitrate leaching into groundwater systems associated with agricultural activities.

Sanitary Hazards and Microbial Quality of Open Dug Wells in the Maldives Islands (Barthiban et al., 2012)

Following the 2004 tsunami, concerns about saline and microbial groundwater quality prompted a surveillance study investigating the sanitary hazards contributing to fecal contamination. Th. Vilufushi, Th. Thimarafushi, Th. Veymandoo, Th. Burunee, ADh. Fenfushi, AA. Thoddoo and B. Dharavandhoo, were chosen for the study. Across the seven islands, two surveys with duplicate sample sets revealed that **only 6.4% of 173 well water samples met the WHO guideline for thermo-tolerant coliform indicator values**. A combined risk analysis considering Sanitary Hazard Scores (SHS) and coliform counts classified **over 57.7% of wells as posing a very high microbial health risk**.

Modifications were made to the WHO's generic sanitary inspection method for better suitability in the vulnerable hydrogeological setting of the Maldives. However, the primary hazard contributing to fecal contamination was the inadequate separation distance between latrine seepage points and wells. Given the hydrogeological conditions and the density of wells and sanitation systems, achieving a safe separation distance was not feasible. Therefore, improving septic tank effluent quality emerged as crucial for addressing and mitigating fecal contamination in the region.

Assessment of Health Risk and Detailed Evaluation of Causative Factors Associated with Use of Contaminated Groundwater in the Remote Atolls (Hajare et al., 2021a)

This study addresses water availability challenges on coral islands, where reliance on groundwater of unknown quality poses infection risks due to pathogens. It emphasizes the importance of integrating water quality data with risk prioritization and quantifying the impact of measures like implementing sewer networks for sustainable water management strategies.

The research collected and analyzed 104 water samples for Escherichia coli from 11 islands in Laamu Atoll. Table 3-6 shows descriptive summary statistics. Simultaneously, an 11-point sanitary survey, incorporating sewer network presence, was conducted at each sampling location to assess the risk of contamination (RoC). **Around 87% of samples showed the presence of E. coli.**

Statistical tools, including multivariable linear regression and propensity score matching, identified significant sanitary factors influencing E. coli presence in water. The analysis suggested a 9–11.1% reduction in E. coli counts with the existence of sewer networks on islands.

The study underscores the necessity of an effective Water Safety Plan that assesses the entire water system, identifies hazards, assesses associated risks, and establishes monitoring and mitigation plans at the island level. This comprehensive approach aims to safeguard communities from waterborne diseases by proactively managing water quality and mitigating contamination risks.

Table 3-6: Descriptive statistics to monitor variability in E. coli count among islands of Laamu Atoll. Source: (Hajare et al., 2021)

Islands	No. of samples	Arithmetic mean (95% CI) CFU/100ml	Semi-quantitative risk Level
L. Gan	18	1171.3 (337.5–2005.3)	Very high risk
L. Fonadhoo	15	198.4 (31.1–365.6)	Intermediate risk
L. Mundoo	3	434.3 (278–1000.2)	High risk
L. Dhanbidhoo	6	17.0 (4.1–45.2)	Low risk
L. Isdhoo	9	108.2 (15.6–201.3)	Intermediate risk
L. Maabaidhoo	7	1588.3 (673.7–2871.6)	Very high risk
L. Kalaidhoo	8	636.7 (736.8–2010.3)	High risk
L. Hithadhoo	10	878.8 (188.1–1944.1)	High risk
L. Kunahandhoo	6	815.5 (121.4–1821.2)	High risk
L. Maavah	13	1483.2 (452.8–3134.1)	Very high risk
L. Maamendhoo	9	1287.3 (215.4–2789.3)	Very high risk
All Samples	104		

A modeling approach for assessing groundwater resources of a large coral island under future climate and population conditions: Gan Island, Maldives (Deng & Bailey, 2019)

The study focuses on forecasting future groundwater supply on Gan Island, Maldives, considering rainfall patterns, sea level rise, and population growth. The method devised for estimating Gan's future groundwater supply can be adapted for other coral islands.

Gan, the largest inhabited island in the Maldives, was assessed using a three-dimensional, density-dependent groundwater and solute transport model called SUTRA. The model was validated against observed groundwater salinity and then projected from 2012 to 2050 to evaluate various scenarios involving future rainfall (based on General Circulation Models), population growth rates (reflecting groundwater pumping), and sea level rise.

The results indicate a 20% increase in total fresh groundwater volume when considering future rainfall patterns alone. However, when moderate pumping (2% annual population growth rate) is factored in, the increase drops to 13%. Aggressive pumping scenarios (9% annual population growth rate) result in a 24% decrease in volume. Additionally, sea level rise and associated shoreline recession lead to a further 15–20% decrease in lens thickness and volume.

These findings provide valuable insights for water resource management on Gan Island and other large coral islands in the Indian and Pacific Oceans. The methodology employed in this study can serve as a template for exploring future groundwater security in any coral island setting.

Impact of Agricultural Chemical Inputs on Human Health and Environment in Maldives (Ajila, 2021)

This study states that the reckless utilization of agrochemicals carries significant consequences for both our delicate environment and human well-being. Issues such as excessive use, unauthorized application, and improper disposal stand out as pivotal problems associated with irresponsible agrochemical usage. Generally, these substances are recognized for their ability to induce neurotoxicity, disrupt endocrine functions, and even pose carcinogenic risks to human health. However, in the Maldives, there's a lack of well-established monitoring and reporting systems to assess the impacts of agrochemicals.

In the Maldives, farmers surpass the recommended technical guidance for pesticide and fertilizer usage. This excessive application of agrochemicals can result in chemical residues remaining on harvested crops or leaching into the groundwater system. Numerous significant issues arise from agrochemical use, including environmental pollution, reduced efficacy, lower food quality, the development of resistance, soil degradation, micronutrient deficiency, toxicity, and diminished income from production. Moreover, there have been observations of pest resistance in many key pests and diseases affecting cultivated crops.

Due to the young geological nature of Maldives' soils—characterized by high porosity and rapid infiltration rates—the extensive application of agrochemicals can easily result in these substances seeping into water bodies. Additionally, mismanaged chemical waste has the potential to permeate into the groundwater system and eventually reach the sea. Seagrass meadows cover the lagoons of many agricultural islands, potentially linked to the heavy use of fertilizers by farmers. An important implication of excessive fertilizer usage is water eutrophication (impacts of chemical fertilizer), raising concerns about its likelihood in Maldivian water systems.

Assessment of groundwater quality and human health risk from nitrate contamination using a multivariate statistical analysis (Raheja et al., 2024)

The study, carried out in the Rohtak district in Haryana, India, examines the suitability of groundwater for drinking and assesses non-carcinogenic health risks for different demographic groups. 47 groundwater samples were

analyzed for various parameters, notably **nitrate** concentration, which ranged from **15 to 85 mg/L**. Nearly half of the samples exceeded the safe limit set by the Bureau of Indian Standards. Spatial mapping showed significant pollution across the study area. Principal component analysis identified five key components explaining 77.36% of the variance. Non-carcinogenic risk rates were found to be elevated, especially for children, with around 80% of the population facing high health risks. Children were identified as particularly vulnerable. The study underscores the urgent need for water treatment before consumption due to the deteriorating groundwater quality in the region.

• The burden of water insecurity: a review of the challenges to water resource management and connected health risks associated with water stress in small island developing states (Parker et al., 2023)

Water resources, whether surpassing per capita abundance thresholds or falling below scarcity thresholds, are critical factors influencing health outcomes in small island developing states (SIDS). While thresholds help identify water stress vulnerability in SIDS, they fail to fully capture the tangible impacts of water scarcity.

This study aimed to highlight the primary challenges in consistently meeting water demand in SIDS and to examine how they intersect with certain health conditions such as dengue fever, gastrointestinal disorders, dehydration, and malnutrition.

Utilizing archival evidence, this review categorized challenges undermining water availability in SIDS and their implications for health outcomes. Seasonal variations in rainfall (73%), inadequate distribution infrastructure (64%), saltwater intrusion (61%), contamination (58%), human-induced changes in watersheds (19%), and sea level rise (17%) were identified as key challenges affecting water demand across 59 SIDS, based on 108 country-specific sources.

Groundwater extraction serves as the main water source in Barbados, Kiribati, Maldives, and Tuvalu, where saltwater intrusion results from both excessive extraction and rising sea levels, the problem is exacerbated by groundwater pollution due to improper waste disposal.

It's important to recognize that any water stress indicator is intricately linked to its human impact. These challenges not only impact food security through agricultural drought and soil salinization but also contribute to the spread of vector-borne and sanitation-related diseases across SIDS.

 A holistic assessment of groundwater quality for drinking and irrigation purposes (Raheja et al., 2023)

This study examines the suitability of groundwater for drinking and irrigation purposes in the Rohtak district of Haryana, India. Various water quality parameters such as the entropy water quality index (EWQI), sodium absorption ratio (SAR), permeability index (PI), Sodium percentage (Na%), Kelly ratio (KR), magnesium adsorption ratio (MAR), US salinity, and Gibbs diagram were analyzed. Spatial mapping indicates that groundwater quality in the central to southwestern parts of the area is generally poor.

The predominant ions were found to be in the following order: $Mg^{2+} > Ca^{2+} > Na^+ > K^+$ and $Cl^- > SO_4^{2-} > NO_3^- > HCO_3^- > F^- > CO_3^{2-}$ respectively. Furthermore, the results show that most groundwater samples exceeded desirable limits for drinking water. The EWQI assessment revealed that 23.4% and 38.4% of groundwater samples were of extremely poor quality during the pre-monsoon and post-monsoon periods, respectively. Additionally, other indices indicated that several parameters surpassed their standard limits, rendering most samples unsuitable for irrigation. The Gibbs diagram and other bivariate plots suggest that various ions in groundwater are attributed to silicate and carbonate weathering, which occur through water-rock interactions and ion exchange

phenomena. Moreover, the US Salinity diagram confirms that many groundwater samples pose significant salinity risks, particularly due to high sodium levels.

Evaluating groundwater quality using health risk assessment and irrigation indexes: Saveh Aquifer, Iran (Shahmirnoori et al., 2023)

The objective of the study was to evaluate the water quality within the Saveh aquifer for its suitability for drinking, public health, and agricultural purposes. Various parameters including the heavy metal pollution index (HPI), hazard index (HI) for non-carcinogenic health risks, sodium percentage, sodium adsorption ratio (SAR), irrigation water quality index (IWQI), and a Piper diagram were utilized. The HPI surpassed 3,300, significantly exceeding the WHO's critical value of 100, indicating severe heavy metal contamination rendering the aquifer unfit for drinking. Heavy metal concentrations also led to cumulative HI exceeding 1 in 54 and 77% of sampling wells for adults and children, respectively. In terms of agriculture, both %NA and IWQI criteria were stricter than SAR. While most of the aquifer met SAR criteria for irrigation suitability, %Na indicated unreliability in many areas, and IWQI suggested unsuitability across almost all regions. The Piper diagram revealed that the prevailing water type was N-CI, followed by Na-HCO3 and Ca-HCO3, indicating high salinity within the aquifer. Overall, the Saveh aquifer exhibits high salinity and significant heavy metal pollution, posing considerable risks for drinking and/or irrigation purposes.

Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South korea (Jeong et al., 2016)

Climate change impacts agricultural water usage vulnerability. Wastewater reuse globally emerges as an alternative amidst changing agricultural conditions. Urbanization accelerates indirect wastewater reuse in agriculture, posing unplanned reuse challenges. Establishing water quality standards is crucial for safe and sustainable implementation. This study proposes preliminary criteria for indirect wastewater reuse in South Korea, integrating practical considerations and categorizing irrigation water usage. It covers parameters such as E. coli, EC, turbidity, Suspended Solids, BOD, pH, odor, and trace elements, aiming to blend conservative and liberal approaches for sustainable practices.

Table 3-7 and Table 3-8 show microbiological indicators for water used for irrigation in the US, recommended by the US EPA and World Health Organisation (WHO).

Table 3-7: Water quality standards of bacterial indicators for food and non-food crop irrigation in United States (Epa et al., 2004; Jeong et

				al., 2016)			
Classi	fication	California	Florida 1	New Jersey	North Carolina	Texas ¹	Virginia ²
Food ^(a)	Total coliform: -2.2 (7 days median) -23 (not more than one sample exceeds this value in 30 days) -240 (max) Total coliform: -75% of samples below detection -25 (max) -24 (max) Fecal coliform: -75% of samples -22 (weak median) -14 (max)		Fecal coliform or <i>E. coli</i> : -3 (monthly mean) -25 (monthly mean)	Fecal coliform or <i>E. coli</i> : -20 (30-day geom) -75 (max)	Fecal coliform: -14 (monthly geom), CAT > 49 <i>E. coli</i> : -11 (monthly geom), CAT > 35		
	Treatment requirements	Oxidized, coagulated, filtered, disinfected	Secondary treatment, filtration, high-level disinfection	Filtration, high-level disinfection	Filtration, dual UV/chlorination (or equivalent)	NS	Secondary treatment, filtration, high-level disinfection
Non-food (b) (Bacterial indicators (cfu/100 mL)	NS	Fecal coliform: -200 (avg) -800 (max)	Fecal coliform: -200 (monthly geom) -400 (weak geom)	Fecal coliform or <i>E. coli</i> : -14 (monthly mean) -25 (daily max)	Fecal coliform or <i>E. coli</i> : -200 (30-day geom) -800 (max)	Fecal coliform: -200 (monthly geom), CAT > 800E. coli: -126 (monthly geom), CAT > 235
	Treatment requirements	Oxidized	Secondary treatment, basic disinfection	Case-by-case	Filtration (or equivalent)	NS	Secondary treatment, disinfection

NS = not specified by the state's reuse regulation; NP = not permitted by the state; CAT = corrective action threshold; geom = geometric mean. ¹ In Florida and Texas, spray irrigation (*i.e.*, direct contact) is not permitted on foods that may be consumed raw, and only irrigation types that avoid reclaimed water contact with edible portions of food crops. ² The requirements presented for Virginia are for food crops eaten raw. ^(a) Food crops: The use of reclaimed water to irrigate food crops that are intended for human consumption.

⁽b) Non-food crops and processed food crops: The use of reclaimed water to irrigate crops that are either processed before human consumption or not consumed by humans.

Table 3-8: Recommended minimum verification monitoring of microbial performance targets for wastewater use in agriculture (Jeong et al., 2016; World Health Organization., 2006)

Type of Irrigation	E. coli (cfu/100 mL) (Arithmetic Mean)	Helminth Eggs (No./L) (Arithmetic Mean)
Uni	restricted ¹	
Root crops (a)	$\leq 10^{3}$	
Leaf crops (b)	$\leq 10^4$	≤1
Drip irrigation, low-growing crops	$\leq 10^{3}$	
Drip irrigation, high-growing crops (c)	$\leq 10^{5}$	_ (d)
Re	estricted ²	
Labor-intensive, high-contact agriculture	$\leq 10^4$	≤1
Highly mechanized agriculture	$\leq 10^{5}$	≤1
Pathogen removal in a septic tank	$\leq 10^{6}$	≤1

¹ Use of treated wastewater to grow crops that are normally eaten raw. ² Use of treated wastewater to grow crops that are not eaten raw by human. ^(a) Crops that may be eaten uncooked. ^(b) Vegetables eaten uncooked such as lettuce and cabbage. ^(c) Crops such as fruit trees and olives. ^(d) No recommendation.

3.4. Regulations and guidelines

Water Resources Protection and Management Regulation (Regulation No: 2021/R-22)

Water Resources Protection and Management Regulation (Regulation No: 2021/R-22) published under the Water and Sewerage Act (8/2020) has objectives to establish and implement a mechanism and to establish regulatory framework for the sustainable usage of the available water resources by preservation, protection and development of the resources in order to achieve its benefits to the fullest.

Under this regulation, clause 14 details prevention of contamination of ground water lens due to agriculture. This clause indicates that when agriculture is carried out in uninhabited islands and areas of land of 10,000 (ten thousand) square meters or more within the jurisdiction of the inhabited islands, the Authority has the right to order water testing to determine the effects of it, on the ground or ground water layer. This regulation indicates that every 6 months in minimum, the following parameters shall be analyzed and submitted to the Utility Regulatory Authority (URA):

- (1) pH
- (2) Electrical Conductivity (µS/cm)
- (3) Nitrate (NO₃-, mg/I)
- (4) Phosphate (PO₄³⁻, mg/I)
- (5) Ammonium (NH₄+, mg/I)
- (6) Sulphate (SO₄²⁻, mg/l)
- (7) Pesticides (ppm)
- (8) Faecal Coliform (Faecal Coliform CFU/100ml)

In the case where cultivation takes place on agricultural lands less than 10,000 (ten thousand) acres within the jurisdiction of inhabited islands, the Authority shall have the power to designate and direct the island council to establish sampling points for groundwater testing with reference to the size of the agricultural land and the type of agriculture carried out on the land. The regulation indicates that the tests shall be conducted for the same parameters as mentioned previously and has to be submitted to URA before the end of March of each calendar year.

Guidelines for water reuse (Epa et al., 2004)

The U.S. Environmental Protection Agency (EPA) has formulated extensive and current water reuse guidelines to complement regulations and directives established by states, tribes, and other governing bodies. Oversight of water reclamation and reuse standards within the United States primarily falls under the purview of state and local agencies, with no federal regulations specifically dedicated to reuse.

Chapter 3.2 of this guideline provides data for water reuse for irrigation purposes, with Table 3-9 and Table 3-10 providing guideline values for physiochemical parameters of water.

Table 3-9: Guidelines for interpretation of water quality for irrigation (Epa et al., 2004)

			Degr	Degree of Restriction on Irrigation			
Potential Irrigation Problem		Units	None	Slight to Moderate	Severe		
Salinity	y (affects crop water availability) ²	·					
	ECw	dS/m	< 0.7	0.7 - 3.0	> 3.0		
	TDS	mg/L	< 450	450 – 2000	> 2000		
Infiltrat	tion (affects infiltration rate of water into the s	oil; evaluate using EC _w and	d SAR togetl	her)³			
	0 – 3		> 0.7	0.7 - 0.2	< 0.2		
	3 – 6		> 1.2	1.2 - 0.3	< 0.3		
SAR	6 – 12	and EC _w =	> 1.9	1.9 - 0.5	< 0.5		
	12 – 20		> 2.9	2.9 - 1.3	< 1.3		
	20 – 40		> 5.0	5.0 - 2.9	< 2.9		
Specifi	ic Ion Toxicity (affects sensitive crops)						
	Sodium (Na) ⁴						
	surface irrigation	SAR	< 3	3 – 9	> 9		
	sprinkler irrigation	meq/l	< 3	> 3			
	Chloride (CI) ⁴						
	surface irrigation	meq/l	< 4	4 – 10	> 10		
	sprinkler irrigation	meq/l	< 3	> 3			
	Boron (B)	mg/L	< 0.7	0.7 - 3.0	> 3.0		
Miscell	laneous Effects (affects susceptible crops)	•					
	Nitrate (NO ₃ -N)	mg/L	< 5	5 – 30	> 30		
	Bicarbonate (HCO ₃)	meq/L	< 1.5	1.5 - 8.5	> 8.5		
	pH			Normal Range 6.5 – 8	.4		

Table 3-10: Recommended water quality criteria for irrigation (Epa et al., 2004)

		commended water quanty criteria for impution (Epa et di., 2004)
Constituent	Maximum Concentrations for Irrigation (mg/L)	Remarks
Aluminum	5.0	Can cause nonproductiveness in acid soils, but soils at pH 5.5 to 8.0 will precipitate the ion and eliminate toxicity
Arsenic	0.10	Toxicity to plants varies widely, ranging from 12 mg/L for Sudan grass to less than 0.05 mg/L for rice
Beryllium	0.10	Toxicity to plants varies widely, ranging from 5 mg/L for kale to 0.5 mg/L for bush beans
Boron	0.75	Essential to plant growth; sufficient quantities in reclaimed water to correct soil deficiencies. Optimum yields obtained at few-tenths mg/L; toxic to sensitive plants (e.g., citrus) at 1 mg/L. Most grasses are tolerant at 2.0 - 10 mg/L
Cadmium	0.01	Toxic to beans, beets, and turnips at concentrations as low as 0.1 mg/L; conservative limits are recommended
Chromium	0.1	Not generally recognized as an essential element; due to lack of toxicity data, conservative limits are recommended
Cobalt	0.05	Toxic to tomatoes at 0.1 mg/L; tends to be inactivated by neutral and alkaline soils
Copper	0.2	Toxic to a number of plants at 0.1 to 1.0 mg/L
Fluoride	1.0	Inactivated by neutral and alkaline soils
Iron	5.0	Not toxic in aerated soils, but can contribute to soil acidification and loss of phosphorus and molybdenum
Lead	5.0	Can inhibit plant cell growth at very high concentrations
Lithium	2.5	Tolerated by most crops up to 5 mg/L; mobile in soil. Toxic to citrus at low doses—recommended limit is 0.075 mg/L
Manganese	0.2	Toxic to a number of crops at few-tenths to few mg/L in acidic soils
Molybdenum	0.01	Nontoxic to plants; can be toxic to livestock if forage is grown in soils with high molybdenum
Nickel	0.2	Toxic to a number of plants at 0.5 to 1.0 mg/L; reduced toxicity at neutral or alkaline pH
Selenium	0.02	Toxic to plants at low concentrations and to livestock if forage is grown in soils with low levels of selenium
Tin, Tungsten, and Titanium	-	Excluded by plants; specific tolerance levels unknown
Vanadium	0.1	Toxic to many plants at relatively low concentrations
Zinc	2.0	Toxic to many plants at widely varying concentrations; reduced toxicity at increased pH (6 or above) and in fine-textured or organic soils

4. Technical Approach and Methodology

The methodology for water sampling was presented in the Inception Report which was approved by MoCCEE on 25th January 2024. The presented methodology was used in the water sampling works as it embodied sound engineering practices in the field of groundwater sampling. The team adopted a well-planned approach to achieve the project objectives within the expected quality, cost, and time. The field investigations and their methodologies are detailed in the following sections.

4.1. Sampling methodology - Physiochemical surveys

From each island, 9 locations were chosen from agricultural areas and 1 location from a mosque was chosen, comprising a total of 10 samples for each island. This method was used as it is important to have comparison points to determine the extent of agrochemical contamination, and the effect it would have on the groundwater utilized by the general population, compared to groundwater used for irrigation. Sampling locations were evenly distributed throughout the island. The geographical coordinates of the sampling location were marked using GPS.

The water samples were collected in sterile plastic containers provided by the laboratory, following standard sampling procedures. Appropriately sized containers were used and proper filling and sealing procedures were followed.

Additionally, a YSI ProDSS water quality meter was used for the on-site measurement of parameters temperature, pH and Dissolved Oxygen. The YSI ProDSS is a portable, handheld multi-parameter probe/meter with a digital sampling system.

Figure 4.1: Groundwater sampling by dipping YSI ProDSS probes directly into the well

All groundwater sampling and water quality testing was conducted following US EPA LSASDPROC-301-R6 Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division (United States Environmental Protection Agency, 2023)) and ASTM D4448: Standard Guide for Sampling Ground-Water Monitoring Wells (ASTM, 2019).

The parameters that were measured for each island are indicated below:

1. Turbidity

2. Water Temperature

- 3. Color
- 4. Odor
- 5. Conductivity
- 6. pH
- 7. Acidity
- 8. Alkalinity
- 9. Total Dissolved Solids (TDS)
- 10. Dissolved Oxygen (DO)
- 11. Biological Oxygen Demands (BOD)
- 12. Chemical Oxygen Demand (COD)
- 13. Total Phosphorous
- 14. Total Nitrogen
- 15. Chloride
- 16. Nitrate
- 17. Nitrite
- 18. Sulphate
- 19. Sodium
- 20. Magnesium
- 21. Calcium
- 22. Iron
- 23. Potassium
- 24. Ammonium
- 25. Total Coliform
- 26. Faecal Coliform
- 27. Phosphate
- 28. Salinity

4.1.1. Collecting Groundwater Samples from a pump/tap

When water samples were taken from a tap, the following procedures were used:

- Cleaning the Tap Outlet: An industrial-grade disposable cleaning paper soaked in disinfectant was used to thoroughly clean the tap, focusing particularly on the outlet to eliminate any dirt, debris, or residue that may have accumulated. This step is essential to prevent any external contaminants present in the tap from entering the water sample.
- Flushing the Tap: The tap was turned on, adjusted to the maximum flow rate, and water was allowed to run for at least one minute at this high flow rate. This procedure is known as Flushing. Flushing the tap helped remove any stagnant water in the pipes and cleared the line of any impurities or residues that might affect the sample's integrity. It ensured that the water was collected from the source (the freshwater lens) and not the piping or tap.
- **Preparing the Sampling Bottle**: The cap was removed from the sampling bottle and the bottle was rinsed three times with the water intended for testing. This rinsing process ensures that any residual substances or contaminants in the bottle are eliminated, minimizing the risk of sample contamination.
- **Collecting the Water Sample**: While maintaining the cap and protective cover of the bottle facing downwards, the bottle was filled with the water from the tap. This positioning prevented any dust or particles from the cap or cover from contaminating the sample as it was filled.
- **Filling and Air Space**: If the bottle is completely full, some water was discarded to create an air space within the bottle, ensuring proper closure without spillage.
- **Sealing the Bottle Securely**: After collecting the desired amount of water in the sampling bottle, the bottle was sealed securely with cap. This step ensured that the sample remained uncontaminated and preserved its integrity during transportation to the laboratory for analysis. Proper sealing was ensured by flipping the container and checking for any leakages.
- Labeling the bottle: The outside of the bottle was wiped and then labelled.

4.1.2. Collecting Groundwater Samples from a well

When water samples were taken from a well, a custom-made portable bailer ("Dhaani" in Dhivehi) was used as shown in Figure 4.2. This bailer was made to ensure that the bottles provided from the laboratory fit securely within the bailer.

The following procedures were used during sampling:

- a) **Preparation of Sampling Bottle**: Prepare the sampling bottle by opening the bottle and attaching it to the bailer.
- b) **Use of bailer for Lowering the Bottle**: The bailer was lowered slowly into the well. It was crucial to prevent the bottle from touching the sides of the well to avoid any contamination from the well walls.
- c) **Submerging the Bottle**: Once the bottle was fully submerged, it was immersed completely in the water and ensured that it went well below the surface without touching the bottom or disturbing any sediment. This step aimed to collect a representative water sample from the main body of the water.
- d) **Removing the bailer and bottle**: Once bottle was completely filled with water, the bailer was removed from the well and bottle was removed from the bailer.
- e) **Filling and Air Space**: If the bottle is completely full, some water was discarded to create an air space within the bottle, ensuring proper closure without spillage.
- f) **Sealing the bottle**: The bottle was capped tightly to prevent any spillage or contamination during transportation to the laboratory for analysis.
- g) Labeling the bottle: The outside of the bottle was wiped and then labelled.

Figure 4.2: Collecting groundwater samples directly from well using custom-made bailer

4.1.3. Sample labelling and documentation

The water samples were labeled with the following parameters:

- 1. **Sampled Date and Time**: The precise date and time when the sample was collected was recorded. This information is essential for tracking any changes or variations in water quality over different periods.
- 2. **Specific Location Details**: The specific location from which the sample was taken was clearly indicated using site identification numbers.
- 3. **Type of Sample**: The type of sample collected (groundwater) was specified. This classification is essential for laboratory technicians to identify which reagents to use in the calibration of equipment used for analysis.
- 4. **Name of the Collector**: The name of the person who collected the sample was also documented. This information is vital for accountability, allowing for traceability and contact in case of any queries or discrepancies.

Pre-printed labels were used to clearly mark the sampling bottle, as can be seen from Figure 4.3. These labels were ensured to be durable and resistant to water to ensure they remained intact throughout handling and transportation. Water resistance was increased by taping over the label after completing it using a transparent tape. Waterproof markers were used to ensure legibility and resistance to smudging or fading.

Figure 4.3: Labelled sampling bottle

The physical parameters of groundwater were also recorded at each location. The appearance and smell of each sample was noted. As part of documentation, detailed records of the sampling process including date, time, well characteristics, and all observations were recorded. These observations were recorded manually on pen and paper on the field, and then converted to digital records once the fieldwork was finished. The water sampling log sheets are attached in Annex 1.

4.1.4. Water Sample Storage

To preserve the representative water samples, all samples were held with freezer blocks in cool boxes, to maintain sample integrity until analysis. It was ensured that samples were not stored below freezing temperatures to prevent solidification of samples. The sample storage boxes, which can be seen in Figure 4.4, were sealed well and protected from light.

Figure 4.4: Sample storage cool boxes

4.2. Sampling methodology – Microbiological surveys

Microbiological surveys were conducted on all 4 islands. Samples were collected for total coliform and faecal coliform analysis. Same sampling locations were used for both microbiological and physiochemical surveys.

The water samples were collected using Whirl-Pak® Thio-Bags® which contain 25 mg of active sodium thiosulfate to neutralize chlorine at the time of collection. To ensure the integrity of the water samples, they were kept with freezer blocks inside cool boxes to maintain temperatures between 0 and 6 degree Celsius. These samples were transported to an accredited laboratory within 24 hours for faecal coliform testing. The following Table 4-1 shows the details of the microbiological testing that was carried out.

Table 4-1: Microbiological Test Details

Parameter	Test Method	Unit
Faecal coliform	Laboratory	MPN/100 mL
Total coliform	Laboratory	MPN/100 mL

Quality assurance (QA) and quality control (QC) procedures are integral to ensure representativeness and integrity of water samples and resulting data to be used in review, analysis and concept and detailed design. The following QA/QC measures were followed to minimize errors and provide accurate results for the microbiological survey:

- The person collecting the sample washed hands thoroughly with soap and water before collecting samples. Alternatively, disposable nitrile gloves were used to decrease contamination when collecting samples. New gloves were used at every new sampling location.
- If wells are sampled, care was taken to ensure the sterility of all sampling equipment and all other equipment entering the well.
- There was no flushing of Whirl-Pak® Thio-Bags® with sample water to prevent removal or disintegration of the preservatives in the bag.
- The bags were handled with care and were only opened at the time of collecting the sample and filling the bag.
- To avoid contamination of sample, it was ensured that the water filling the bag wasn't touched by anybody and nobody touched the inside or on the lip of the sampling bag.
- The bag was sealed tightly immediately after collecting sufficient amount of water and labelled.

 The bags were kept with freezer blocks inside cool boxes at temperatures between 0 and 6 degree Celsius to ensure integrity of samples.

5. Groundwater Quality Results

5.1. Physiochemical survey results

5.1.1. L. Gan

Groundwater quality measurements were made at 10 selected locations in L. Gan and Table 5-1, Table 5-2 and Table 5-3 show the statistical summary of the water quality results. Individual results for physiochemical parameters are shown in Table 5-4. Map of locations where groundwater quality points were taken for physiochemical analysis is attached to Annex I.

For the following parameters, statistical summary could not be provided for the described reasons:

- Odor Sampling procedure used a threshold odor test (APHA-2150-B), which provides qualitative
 description of odour as either "agreeable" or "not agreeable". All samples tested except one sample had
 an agreeable result for odour.
- Acidity, nitrite, ammonia, total phosphorous, total nitrogen, and phosphate All results showed concentrations less than 0.1 mg/L.

Table 5-1: Statistical summary of groundwater physiochemical parameters in L. Gan (1/3)

	Temp (°C)	Color (Hazen)
Mean	29.4	3.80
Median	28.9	3.75
SD	2.01	0.49
Min	27.7	3.20
Max	34.6	5.10
CV	0.068	0.129

Table 5-2: Statistical summary of groundwater physiochemical parameters in L. Gan (2/3)

	Turbidity (FNU)	TDS (mg/L)	EC (μS/cm)	Sal (ppt)	рН	Alkalinity (mg/L)	DO (mg/L)	BOD (mg/L)	COD (mg/L)
Standards	<1 Source ²	150 – 350, <500 Source ²	<1500 Potable purposes Source¹ <2500 Non-potable purposes Source¹ 300 – 700, <1000 Source²		6.5-8.5 Source ²		>3 Source ³	<12 Source ³	
Mean	0.36	328	490	0.28	7.73	31.2	3.80	5.25	15.80
Median	0.20	307	460	0.26	7.80	31.5	3.71	5.00	15.50
SD	0.31	82.1	124	0.07	0.41	7.57	2.27	0.43	2.48
Min	0.10	254	378	0.23	6.75	20.0	0.97	5.0	13.0
Max	1.20	545	818	0.48	8.29	42.0	9.39	6.0	21.0
CV	0.862	0.251	0.253	0.253	0.053	0.243	0.597	0.0825	0.157

Table 5-3: Statistical summary of groundwater physiochemical parameters in L. Gan (3/3)

	Chlorides (mg/L)	Nitrates (mg/L)	Sulphate (mg/L)	Magnesium as Mg	Calcium as Ca	Iron (mg/L)	Sodium as Na	Potassium as K
Standards	<200 Source ²	<50 Source ^{1,2}	<250 Source ^{1,2}	(mg/L)	(mg/L)	<0.3 Source ²	(mg/L) <200 Source ²	(mg/L) 0-50 Source ²
	<600 Source ³							
Mean	78.10	3.49	9.31	17.6	44.6	0.03	17.4	4.65
Median	75.50	2.20	7.95	17.0	43.0	0.02	18.3	4.75
SD	9.49	4.19	3.23	1.91	5.24	0.03	3.21	0.72
Min	71.00	1.50	7.50	15.0	39.0	0.01	13.0	3.70
Max	105.00	16.00	18.60	21.0	58.0	0.08	22.9	5.80
CV	0.122	1.201	0.347	0.108	0.117	0.853	0.184	0.155

Note: SD=Standard Deviation, Min=Minimum, Max=Maximum, CV=Coefficient of Variation

Temp=Temperature,

TDS=Total Dissolved Solids, EC=Electrical Conductivity, Sal=Salinity, DO=Dissolved Oxygen, BOD=Biological Oxygen Demand, COD=Chemical Oxygen Demand

Cl⁻=Chloride, NO₃⁻=Nitrate, SO₄²⁻=Sulfate, Mg=Magnesium as Mg, Ca=Calcium as Ca, Fe=Iron, Na=Sodium, K=Potassium as K Source¹ = WHO Drinking Water Guidelines, 2017. Source² = URA Supply Water Quality Standard, 2022, Source³ = water suitable for irrigation and agricultural activities, under the Sri Lankan National Environmental (Ambient Water Quality) Regulations, 2019.

	Table 5-4: Physiochemical water parameters in L. Gan									
Sample No	Gan_01	Gan_02	Gan_03	Gan_04	Gan_05	Gan_06	Gan_07	Gan_08	Gan_09	Gan_10
Temperature (ºC)	29.5	34.6	28.3	28.2	27.7	29.4	27.8	27.8	30.8	30.3
Color (Hazen)	3.4	3.8	3.5	3.2	3.9	3.7	5.1	3.6	4	3.8
Odour	A*	A*	A*	Not A*	A*	A*	A*	A*	A*	A*
Turbidity	0.4	0.2	0.2	0.6	0.2	0.3	1.2	0.2	0.1	0.2
(NTU)										
TDS (mg/L)	378	277	296	545	324	254	353	258	272	318
EC (μs/cm)	567	414	443	817.5	483	378	529.5	384	406	477
Salinity (ppt)	0.31	0.25	0.26	0.48	0.26	0.23	0.27	0.23	0.24	0.26
pH	6.8	7.7	7.5	7.5	7.7	8.0	8.1	7.9	8.3	8.0
Alkalinity (mg/L)	21	31	36	20	31	41	32	22	36	42
Acidity (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DO (mg/L)	4.46	3.13	2.01	0.97	4.42	4.87	3.30	1.32	9.39	4.11
BOD (mg/L)	5	<5	5	6	<5	<5	<5	<5	<5	5
COD (mg/L)	19	14	15	21	16	13	17	13	14	16
Chlorides (mg/L)	81	73	75	105	77	71	79	71	73	76
Nitrates (mg/L)	2.5	1.8	2.1	2.9	16	1.5	2.5	1.6	1.7	2.3
Nitrite (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphate (mg/L)	10.2	7.8	7.9	18.6	8	7.5	9.9	7.5	7.7	8
Magnesium as Mg	21	17	17	21	18	16	18	15	16	17
(mg/L) Calcium as Ca (mg/L)	45	41	43	58	48	40	43	39	42	47
Iron (mg/L)	0.08	0.01	0.02	0.02	0.02	<0.005	0.08	<0.005	0.01	0.02
Ammonia (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total- Phosphorous (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Nitrogen (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium as Na (mg/L)	20.8	15.2	18	22.9	18.5	13	20	13	14.5	18.5
Potassium as	5.6	4.1	4.7	5.8	4.8	3.7	5.3	3.7	4	4.8
K (mg/L)										
Phosphate (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Note: $A^* = Ag$	reeable									

Note: A* = Agreeable
TDS = Total Dissolved Solids, EC = Electrical Conductivity, DO = Dissolved Oxygen, BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand

5.1.2. L. Isdhoo

Groundwater quality measurements were made at 10 selected locations in L. Isdhoo and Table 5-5, Table 5-6 and Table 5-7 show the statistical summary of the water quality results. Individual results for physiochemical parameters are shown in Table 5-8. Map of locations where groundwater quality points were taken for physiochemical analysis is attached to Annex I.

For the following parameters, statistical summary could not be provided for the described reasons:

- Odor Sampling procedure used a threshold odor test (APHA-2150-B), which provides qualitative
 description of odour as either "agreeable" or "not agreeable". All samples tested except one sample had
 an agreeable result for odour.
- Acidity, nitrite, ammonia, total phosphorous, total nitrogen, and phosphate All results showed concentrations less than 0.1 mg/L.

For the parameter Iron, it should be noted that 5 samples had concentration less than 0.005 mg/L and therefore the iron concentration of these 5 samples could not be quantified through the lab testing procedure. Statistical summary is provided for 5 remaining samples, which had concentrations greater than 0.005 mg/L.

Table 5-5: Statistical summary of groundwater physiochemical parameters in L. Isdhoo (1/3)

	Temp (°C)	Color (Hazen)
Mean	27.98	4.61
Median	27.95	3.95
SD	0.67	1.49
Min	27.0	3.70
Max	29.2	8.20
CV	0.024	0.322

Table 5-6: Statistical summary of groundwater physiochemical parameters in L. Isdhoo (2/3)

	Turbidity (FNU)	TDS (mg/L)	EC (μS/cm)	Sal (ppt)	рН	Alkalinity (mg/L)	DO (mg/L)	BOD (mg/L)	COD (mg/L)
Standards	<1 Source ²	150 – 350, <500 Source ²	<1500 Potable purposes Source¹ <2500 Non-potable purposes Source¹ 300 – 700, <1000 Source²		6.5-8.5 Source ²		>3 Source ³	<12 Source ³	
Mean	0.74	321	480	0.29	7.85	7.86	120	5.25	15.3
Median	0.20	285	427	0.25	7.88	7.85	39.4	5.00	14.5
SD	1.11	122.1	182	0.09	0.16	0.12	175	0.43	4.03
Min	0.10	197	296	0.22	7.52	7.70	1.49	5.00	10
Max	3.60	621	926	0.52	8.10	8.10	501	6.00	25
CV	1.50	0.380	0.379	0.318	0.021	0.015	1.45	0.082	0.263

Table 5-7: Statistical summary of groundwater physiochemical parameters in L. Isdhoo (3/3)

Chlorides	Nitrates	Sulphate			lron	Sodium	Potassium
(mg/L)	(mg/L)	(mg/L)	as Mg	as Ca	(mg/L)	as Na	as K
			(mg/L)	(mg/L)		(mg/L)	(mg/L)

Standards	<200 Source ² <600 Source ³	<50 Source ^{1,2}	<250 Source ^{1,2}			<0.3 Source ²	<200 Source ²	0-50 Source ²
Mean	93.3	4.19	9.43	18.3	43.4	0.0240	16.8	4.44
Median	73.5	1.85	7.85	18.0	40.0	0.02	16.1	4.30
SD	60.8	6.95	3.97	3.52	8.10	0.01	4.87	1.10
Min	62.0	1.40	7.20	13.0	33.0	0.01	11.1	3.00
Max	275	25.00	20.50	26.0	64.0	0.05	28.5	7.20
CV	0.652	1.658	0.421	0.193	0.187	0.565	0.290	0.249

Note: SD=Standard Deviation, Min=Minimum, Max=Maximum, CV=Coefficient of Variation

Temp=Temperature, TDS=Total Dissolved Solids, EC=Electrical Conductivity, Sal=Salinity, DO=Dissolved Oxygen, BOD=Biological Oxygen Demand, COD=Chemical Oxygen Demand

Source¹ = WHO Drinking Water Guidelines, 2017. Source² = URA Supply Water Quality Standard, 2022, Source³ = water suitable for irrigation and agricultural activities, under the Sri Lankan National Environmental (Ambient Water Quality) Regulations, 2019.

Table 5-8: Physiochemical water parameters in L. Isdhoo

Sample No	Isd_01	Isd_02	Isd_03	Isd_04	Isd_05	Isd_06	Isd_07	Isd_08	Isd_09	Isd_10
Temperature (ºC)	28.9	27.5	27.1	27	28	28.1	27.8	28.3	27.9	29.2
Color (Hazen)	3.8	4.2	4	8.2	3.9	3.8	6.8	3.7	3.7	4
Odour	A*	Not A*	A*	A*	Α*	A*	A*	Α*	A*	A*
Turbidity (NTU)	0.2	0.1	0.1	3.6	0.2	0.4	2.1	0.3	0.2	0.2
TDS (mg/L)	289	295	240	621	256	197	479	259	294	281
EC (μs/cm)	433	441	359	926	381	295.5	714	386	440	420
Salinity (ppt)	0.25	0.26	0.23	0.52	0.23	0.22	0.39	0.24	0.26	0.25
pH	7.5	7.8	7.9	7.7	7.9	8.1	7.7	7.9	8.0	8.0
Alkalinity (mg/L)	32	35	32	25	25	41	30	35	36	42
Acidity (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DO (mg/L)	2.01	3.36	1.49	49.1	29.6	25.1	501	64.8	101	426
BOD (mg/L)	<5	5	<5	6	<5	<5	5	<5	5	<5
COD (mg/L)	15	15	13	25	13	10	20	13	15	14
Chlorides (mg/L)	74	75	70	275	71	62	86	72	75	73
Nitrates (mg/L)	1.9	2	1.4	25	1.6	1.7	2.9	1.6	2	1.8
Nitrite (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphate (mg/L)	7.9	7.9	7.5	20.5	7.5	7.2	12.5	7.6	7.8	7.9
Magnesium as Mg (mg/L)	18	19	14	22	18	13	26	17	19	17
Calcium as Ca (mg/L)	40	43	39	51	40	33	64	40	44	40
Iron (mg/L)	0.02	0.02	<0.005	<0.005	<0.005	<0.005	0.05	<0.005	0.02	0.01
Ammonia (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total-Phosphorous (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Nitrogen (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium as Na (mg/L)	16.3	17.9	12.8	28.5	13	11.1	21.4	13.2	17.9	15.9
Potassium as K (mg/L)	4.4	4.6	3.6	7.2	3.7	3	5.3	3.8	4.6	4.2
Phosphate (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Note: A* = Agreeable

TDS = Total Dissolved Solids, EC = Electrical Conductivity, DO = Dissolved Oxygen, BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand

5.1.3. L. Kalaidhoo

Groundwater quality measurements were made at 10 selected locations in L. Kalaidhoo and Table 5-9, Table 5-10 and Table 5-11 show the statistical summary of the water quality results. Individual results for physiochemical parameters are shown in Table 5-12. Map of locations where groundwater quality points were taken for physiochemical analysis is attached to Annex I.

For the following parameters, statistical summary could not be provided for the described reasons:

- **Odor** Sampling procedure used a threshold odor test (APHA-2150-B), which provides qualitative description of odour as either "agreeable" or "not agreeable". All samples tested except one sample had an agreeable result for odour.
- Acidity, nitrite, ammonia, total phosphorous, total nitrogen, and phosphate All results showed concentrations less than 0.1 mg/L.

For the parameter Iron, it should be noted that 5 samples had concentration less than 0.005 mg/L and therefore the iron concentration of these 5 samples could not be quantified through the lab testing procedure. Statistical summary is provided for 5 remaining samples, which had concentrations greater than 0.005 mg/L.

Table 5-9: Statistical summary of groundwater physiochemical parameters in L. Kalaidhoo (1/3)

	Temp (°C)	Color (Hazen)
Mean	28.4	5.28
Median	28.4	4.65
SD	0.9	1.61
Min	27.3	3.30
Max	30.3	7.60
CV	0.030	0.305

Table 5-10: Statistical summary of groundwater physiochemical parameters in L. Kalaidhoo (2/3)

	Turbidity (FNU)	TDS (mg/L)	EC (μS/cm)	Sal (ppt)	рН	Alkalinity (mg/L)	DO (mg/L)	BOD (mg/L)	COD (mg/L)
Standards	<1 Source ²	150 – 350, <500 Source ²	<1500 Potable purposes Source¹ <2500 Non-potable purposes Source¹ 300 – 700, <1000 Source²		6.5-8.5 Source ²		>3 Source ³	<12 Source ³	
Mean	1.39	273.2	409	0.25	8.07	7.93	52.8	5.50	14.4
Median	0.85	263	394	0.25	8.07	7.85	37.3	5.50	14.5
SD	1.34	63.5	95	0.04	0.26	0.30	42.1	0.50	3.2
Min	0.20	188	282	0.20	7.70	7.50	5.62	5.00	9.0
Max	3.70	394	591	0.32	8.60	8.60	120	6.00	21.0
CV	0.964	0.233	0.233	0.163	0.032	0.038	0.797	0.091	0.222

Table 5-11: Statistical summary of groundwater physiochemical parameters in L. Kalaidhoo (3/3)

Chlorides (mg/L)	Nitrates (mg/L)	Sulphate (mg/L)	Magnesium as Mg	Calcium as Ca	Iron (mg/L)	Sodium as Na	Potassium as K
			(mg/L)	(mg/L)		(mg/L)	(mg/L)

Standards	<200 Source ² <600 Source ³	<50 Source ^{1,2}	<250 Source ^{1,2}			<0.3 Source ²	<200 Source ²	0-50 Source ²
Mean	72.1	2.01	8.09	15.9	39.6	0.0380	15.2	4.04
Median	73.0	1.90	7.75	16.0	40.0	0.02	15.3	3.85
SD	6.1	0.36	1.08	2.66	4.15	0.03	3.41	0.92
Min	62.0	1.60	7.10	12.0	33.0	0.01	10.8	2.90
Max	83.0	2.80	10.60	21.0	46.0	0.07	20.5	5.80
CV	0.085	0.179	0.134	0.167	0.105	0.694	0.225	0.227

Note: SD=Standard Deviation, Min=Minimum, Max=Maximum, CV=Coefficient of Variation

Temp=Temperature,

TDS=Total Dissolved Solids, EC=Electrical Conductivity, Sal=Salinity, DO=Dissolved Oxygen, BOD=Biological Oxygen Demand, COD=Chemical Oxygen Demand

Source¹ = WHO Drinking Water Guidelines, 2017. Source² = URA Supply Water Quality Standard, 2022, Source³ = water suitable for irrigation and agricultural activities, under the Sri Lankan National Environmental (Ambient Water Quality) Regulations, 2019.

Table 5-12: Physiochemical water parameters in L. Kalaidhoo

Campala Na	V-1 01				nical water p			W-1 00	V-1 00	K-1 10
Sample No	Kal_01	Kal_02	Kal_03	Kal_04	Kal_05	Kal_06	Kal_07	Kal_08	Kal_09	Kal_10
Temperature (°C)	28.5	30.3	29.2	28.3	28.4	27.7	27.9	27.6	27.3	29.2
Color (Hazen)	7.6	3.8	7.2	7.1	4	3.9	3.9	3.3	5.3	6.7
Odour	A*	A*	A*	Not A*	A*	A*	A*	A*	A*	A*
Turbidity (NTU)	3.7	0.2	2.6	3.5	0.2	0.2	0.2	0.4	1.3	1.6
TDS (mg/L)	364	243	188	239	289	302	283	394	204	226
EC (μs/cm)	546	364.5	282	356	432	450	424	591	306	339
Salinity (ppt)	0.31	0.3	0.2	0.23	0.25	0.26	0.25	0.32	0.21	0.21
рН	8.33	7.94	8.60	8.15	7.89	7.99	7.74	7.70	8.20	8.19
Alkalinity (mg/L)	26	26	51	20	36	35	31	31	42	43
Acidity (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DO (mg/L)	97.4	120	114	17.5	72.2	36.8	37.8	20.4	5.62	6.64
BOD (mg/L)	5	<5	<5	<5	<5	<5	<5	6	<5	<5
COD (mg/L)	18	15	9	13	15	15	14	21	11	13
Chlorides (mg/L)	78	73	62	70	75	76	73	83	65	66
Nitrates (mg/L)	2.5	1.8	1.6	1.9	1.9	2.2	1.9	2.8	1.7	1.8
Nitrite (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphate (mg/L)	9.7	7.8	7.1	7.5	7.7	8	7.9	10.6	7.3	7.3
Magnesium as Mg (mg/L)	19	17	12	16	17	15	16	21	13	13
Calcium as Ca (mg/L)	46	42	33	40	42	38	40	45	34	36
Iron (mg/L)	0.07	<0.005	<0.005	<0.005	0.02	0.02	0.01	0.07	<0.005	<0.005
Ammonia (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total- Phosphorous (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Nitrogen (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium as Na (mg/L)	20	14.6	10.8	12	16.3	18.1	16	20.5	11.5	11.8
Potassium as K (mg/L)	5.2	3.5	2.9	3.5	4.3	4.7	4.2	5.8	3.1	3.2
Phosphate (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Note: $A^* = Ag$	rooahlo									

Note: $A^* = Agreeable$

TDS = Total Dissolved Solids, EC = Electrical Conductivity, DO = Dissolved Oxygen, BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand

5.1.4.L. Dhanbidhoo

Groundwater quality measurements were made at 10 selected locations in L. Dhanbidhoo and Table 5-13, Table 5-14 and Table 5-15 show the statistical summary of the water quality results. Individual results for

physiochemical parameters are shown in Table 5-16. Map of locations where groundwater quality points were taken for physiochemical analysis is attached to Annex I.

For the following parameters, statistical summary could not be provided for the described reasons:

- **Odor** Sampling procedure used a threshold odor test (APHA-2150-B), which provides qualitative description of odour as either "agreeable" or "not agreeable". All samples tested except one sample had an agreeable result for odour.
- Acidity All results showed concentrations less than 0.1 mg/L.
- Nitrite, ammonia, total phosphorous, total nitrogen, and phosphate Only one sample showed concentration greater than 0.1 mg/L

For the parameter Iron, it should be noted that 3 samples had concentration less than 0.005 mg/L and therefore the iron concentration of these 3 samples could not be quantified through the lab testing procedure. Statistical summary is provided for 8 remaining samples, which had concentrations greater than 0.005 mg/L.

Table 5-13: Statistical summary of groundwater physiochemical parameters in L. Dhanbidhoo (1/3)

	Temp (°C)	Color (Hazen)
Mean	28.8	4
Median	27.6	3.3
SD	27.4	4.2
Min	27.4	3.1
Max	30.1	6.2
CV	28	3.8

Table 5-14: Statistical summary of groundwater physiochemical parameters in L. Dhanbidhoo (2/3)

	Turbidity	TDS	EC (μS/cm)	Sal	рН	Alkalinity	DO	BOD	COD
	(FNU)	(mg/L)		(ppt)		(mg/L)	(mg/L)	(mg/L)	(mg/L)
Standards	<1	150 – 350,	<1500		6.5-8.5		>3	<12	
	Source ²	<500	Potable		Source ²		Source ³	Source ³	
		Source ²	purposes Source ¹						
			<2500						
			Non-potable purposes						
			Source ¹						
			300 – 700,						
			<1000						
			Source ²						
Mean	0.64	498	666	0.43	8.05	8.04	4.66	7.00	22.1
Median	0.30	411	425	0.34	8.07	8.05	3.36	6.00	17.5
SD	0.94	312	482	0.26	0.27	0.20	3.14	2.45	11.6
Min	0.20	188	281	0.23	7.65	7.70	1.29	5.00	10.0
Max	3.40	1255	1873	1.12	8.59	8.40	10.75	12.00	49.0
CV	1.463	0.627	0.724	0.611	0.033	0.024	0.675	0.350	0.526

Table 5-15: Statistical summary of groundwater physiochemical parameters in L. Dhanbidhoo (3/3)

	Chlorides (mg/L)	Nitrates (mg/L)	Sulphate (mg/L)	Magnesium as Mg (mg/L)	Calcium as Ca (mg/L)	lron (mg/L)	Sodium as Na (mg/L)	Potassium as K (mg/L)
Standards	<200 Source ²	<50 Source ^{1,2}	<250 Source ^{1,2}			<0.3 Source ²	<200 Source ²	0-50 Source ²

	<600 Source ³							
Mean	144.1	8.35	15.2	19.6	54.1	0.0671	24.4	5.26
Median	81.0	2.70	10.3	20.5	54.5	0.03	20.6	4.85
SD	135.8	12.14	9.68	4.15	15.3	0.05	15.3	2.78
Min	64	1.60	7.30	13.0	34.0	0.02	10.8	2.00
Max	515	35.0	38.0	25.0	87.0	0.15	65.2	11.30
CV	0.943	1.454	0.635	0.212	0.283	0.754	0.629	0.529

Note:

SD=Standard Deviation, Min=Minimum, Max=Maximum, CV=Coefficient of Variation Temp=Temperature,

TDS=Total Dissolved Solids, EC=Electrical Conductivity, Sal=Salinity, DO=Dissolved Oxygen, BOD=Biological Oxygen Demand, COD=Chemical Oxygen Demand

Source¹ = WHO Drinking Water Guidelines, 2017. Source² = URA Supply Water Quality Standard, 2022, Source³ = water suitable for irrigation and agricultural activities, under the Sri Lankan National Environmental (Ambient Water Quality) Regulations, 2019.

	Table 5-16: Physiochemical water parameters in L. Dhanbidhoo									
Sample No	Dhab_0 1	Dhab_0 2	Dhab_0 3	Dhab_0 4	Dhab_0 5	Dhab_0 6	Dhab_0 7	Dhab_0 8	Dhab_0 9	Dhab_1 0
Temperatur	28.8	27.6	27.4	28.5	27.8	28	29.9	30.1	28.1	29.7
e (ºC)										
Color	6.2	3.3	4.2	5.4	3.5	3.8	3.3	3.2	4	3.1
(Hazen)										-
Odour	A*	A*	A*	A*	A*	A*	A*	Not A*	A*	A*
Turbidity	3.4	0.3	0.2	0.8	0.4	0.2	0.3	0.4	0.2	0.2
(NTU)					• • •	•		• • •		
TDS (mg/L)	780	591	1255	349	473	308	188	588	261	189
EC (µs/cm)	1164	339	1873	521	359	461	281	882	389	386
Salinity (ppt)	0.66	0.45	1.12	0.31	0.36	0.26	0.23	0.45	0.24	0.23
рН	8.6	8.3	7.7	8.1	7.8	7.7	8.1	8.2	8.0	8.1
Alkalinity	48	45	39	41	37	26	42	43	31	43
(mg/L)					J ,		'-		01	
Acidity	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/L)	3.1	3.1			3.1	.5.1		.5.1	.5.1	311
DO (mg/L)	8.51	3.29	1.29	3.42	2.49	1.81	2.19	10.75	4.52	8.28
BOD (mg/L)	8	6	12	6	<5	<5	<5	5	<5	5
COD (mg/L)	35	28	49	17	18	15	10	24	13	12
Chlorides	265	108	515	79	83	76	64	110	72	69
(mg/L)		100	313	, ,	05	, 0	0-1	110	, _	03
Nitrates	30	3	35	2.5	2.9	2.2	1.6	3.1	1.6	1.6
(mg/L)	30	J	33	2.3	2.3	2.2	1.0	3.1	1.0	1.0
Nitrite	<0.1	<0.1	0.14	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/L)	10.1	10.1	0.1.	10.1	10.1	10.2	10.1	10.1	10.1	10.1
Sulphate	25	19.3	38	8.6	12	8	7.3	19.3	7.6	7.3
(mg/L)				0.0			7.0			
Magnesium	20	25	25	21	22	16	14	23	17	13
as Mg										
(mg/L)										
Calcium as	55	65	87	54	63	44	34	62	41	36
Ca (mg/L)							_			
Iron (mg/L)	0.15	0.03	0.12	0.02	0.1	0.02	<0.005	0.03	<0.005	<0.005
Ammonia	<0.1	<0.1	0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/L)										
Total-	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phosphorou										
s (mg/L)										
Total	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrogen										
(mg/L)										
Sodium as	35.4	24.5	65.2	19.7	21.4	18.2	10.8	24.6	13.2	10.8
Na (mg/L)										
Potassium	9.2	5.9	11.3	5	2	4.7	2.7	5	3.8	3
as K (mg/L)										
Phosphate	<0.1	<0.1	0.37	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/L)										
Note: A* = Ag	reeable									

A* = Agreeable

TDS = Total Dissolved Solids, EC = Electrical Conductivity, DO = Dissolved Oxygen, BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand

5.2. Microbiological survey results

5.2.1. L. Gan

Groundwater microbiological quality sampling was conducted at the same 10 selected locations in L. Gan as physiochemical sampling was conducted. The following Table 5-17 shows the results.

Table 5-17: Groundwater microbiological parameters in L. Gan

Sample No.	Faecal Coliform (MPN/ 100mL)	Total Coliform (MPN/ 100mL)	Notes
Gan_01	12	12	
Gan_02	124	326	
Gan_03		2420	
Gan_04	>2420	>2420	
Gan_05	378	>2420	
Gan_06		>2420	
Gan_07	>2420	>2420	
Gan_08	>2420	>2420	
Gan_09	>2420	>2420	
Gan_10	>2420	>2420	Control Location (mosque)

5.2.2. L. Isdhoo

Groundwater microbiological quality sampling was conducted at the same 10 selected locations in L. Isdhoo as physiochemical sampling was conducted. The following Table 5-18 shows the results.

Table 5-18: Groundwater microbiological parameters in L. Isdhoo

Sample No.	Faecal Coliform (MPN/ 100mL)	Total Coliform (MPN/ 100mL)	Notes
Isd_01	138	>2420	Control Location (mosque)
Isd_02	>2420	>2420	
Isd_03	>2420	>2420	
Isd_04	866	>2420	
Isd_05	921	>2420	
Isd_06	>2420	>2420	
Isd_07	>2420	>2420	
Isd_08	173	>2420	
Isd_09	>2420	>2420	
Isd_10	>2420	>2420	

5.2.3. L. Kalaidhoo

Groundwater microbiological quality sampling was conducted at the same 10 selected locations in L. Kalaidhoo as physiochemical sampling was conducted. The following Table 5-19 shows the results.

Table 5-19: Groundwater microbiological parameters in L. Kalaidhoo

Sample No.	Faecal Coliform (MPN/ 100mL)	Total Coliform (MPN/ 100mL)	Notes
Kal_01	1300	>2420	
Kal_02	436	>2420	
Kal_03	>2420	>2420	
Kal_04	77	>2420	
Kal_05	91	>2420	
Kal_06	437	>2420	
Kal_07	183	>2420	
Kal_08	>2420	>2420	
Kal_09	94	>2420	
Kal_10	>2420	>2420	Control Location (mosque)

5.2.4. L. Dhanbidhoo

Groundwater microbiological quality sampling was conducted at the same 10 selected locations in L. Dhanbidhoo as physiochemical sampling was conducted. The following Table 5-20 shows the results.

Table 5-20: Groundwater microbiological parameters in L. Dhanbidhoo

rable 3-20. Groundwater microbiological parameters in L. Dhanbianoo							
Sample No.	Faecal Coliform (MPN/ 100mL)	Total Coliform (MPN/ 100mL)	Notes				
Dhab_01	178	1553					
Dhab_02	1553	>2420					
Dhab_03	96	>2420					
Dhab_04	1553	>2420					
Dhab_05	10	238					
Dhab_06	105	300					
Dhab_07	78	261	Control Location (mosque)				
Dhab_08	111	1986					
Dhab_09	548	>2420					
Dhab_10	>2420	>2420					

6. Discussion

6.1. L. Gan

6.1.1. Physiochemical analysis

Overall, the physiochemical results fall within permissible limits when measured against both national and international standards outlined in in Table 5-1, Table 5-2 and Table 5-3, with one exception. The sample labeled Gan_04 exhibits an excessively high level of TDS that surpasses the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022). High levels of TDS can have a slight to moderate effect on usage for irrigation (Epa et al., 2004). Additionally, this sample also has a not agreeable odour present.

Despite the chloride concentrations being within acceptable limits specified in national and international standards, the level of chloride in all 10 samples renders them highly unsuitable for use with sensitive crops with specific ion toxicity towards chloride, as outlined by (Epa et al., 2004).

Gan_07 had colour of 5.1 Hazens, which is higher than other locations. However, there were no available standards that provided color measurements specifically in Hazen units, making it difficult to draw comparisons.

The results of groundwater quality results for 11 of the 13 pump stations in L. Gan, which were taken in November 2022 by Fenaka Corporation for groundwater monitoring purposes, are shown below in Table 6-1. The locations of pump stations and sewerage treatment plants are shown in Figure 6.1, as per data received from Fenaka (2023). Most parameters are within acceptable limits, except for high conductivity and TDS in PS 1, PS 8 and PS 9. Gan_04, which is close to PS8 also has high TDS. The Nitrate levels of PS 3 and PS 5 are also higher than the rest of the pump stations and are moderately unsuitable for irrigation use for crops susceptible to Nitrate (Epa et al., 2004).

Table 6-1: Groundwater quality results for samples taken close to pump stations in L. Gan taken in November 2022 (Fenaka, 2023)

Sample Location	PS 1	PS 2	PS 3	PS 4	PS 5	PS 6	PS 7	PS 8	PS 9	PS 10	PS 11
Physical Appearance					Clea	ar with pa	rticles				
Conductivity (µS/cm)	1038	647	877	138.1	778	420	974	1507	1455	438	486
pН	7.3	7.2	7.1	9.5	7.3	7.7	7.6	7.3	7.2	7.7	7.6
Salinity (‰)	0.51	0.32	0.43	0.07	0.39	0.21	0.49	0.76	0.72	0.22	0.24
Temperatur e (°C)	22.4	22.1	21.9	21.8	21.9	22.5	22.3	22.3	22.2	22.2	22.6
Total Dissolved Solids (mg/L)	519	324	439	69	389	210	487	754	727	219	243
Nitrate (mg/L)	4.0	3.1	7.8	1.9	10.1	2.5	2.6	1.2	1.3	0.7	0.4
Sulphide (μg/L)		<5 (LoQ 5 μg/L)									
Phosphate (mg/L)	0.38	0.16	0.19	0.16	0.59	0.17	0.32	0.13	0.18	0.17	0.09

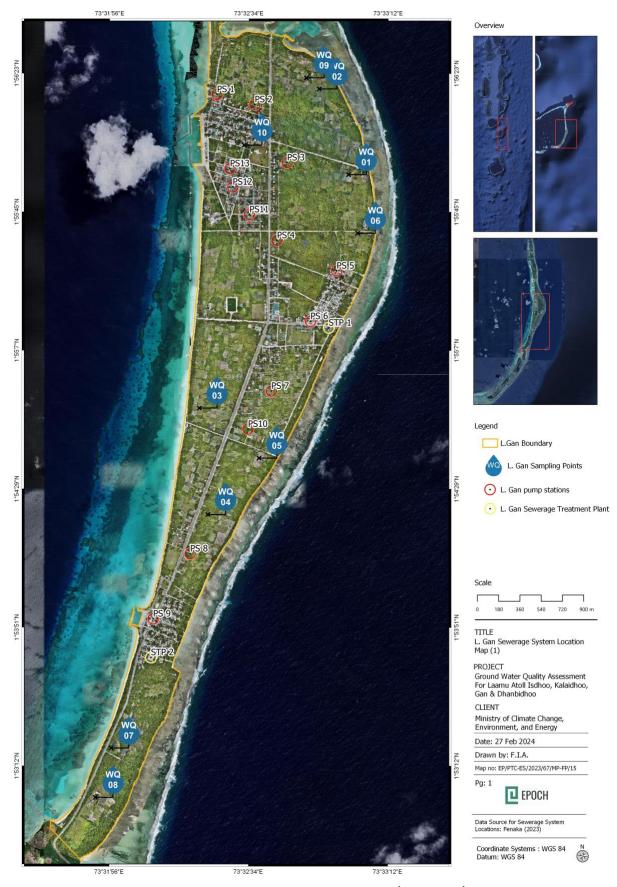


Figure 6.1: Gan Sewerage System Locations Map (Fenaka, 2023)

6.1.2. Microbiological analysis

Overall, L. Gan has extremely poor microbiological water quality at all 10 locations sampled. Total coliform levels were too numerous to count and exceed measurable levels at 8 of the 10 locations sampled. Faecal coliform levels exceed measurable levels at 5 of the 8 locations sampled. The remaining locations also have high levels of both total and fecal coliform, except for Gan_01. The results concur with the very high-risk levels of E. Coli detected by (Hajare et al., 2021b) as shown in Table 3-6. As a result, the groundwater in L. Gan has deteriorated to wastewater quality levels. This could be in part due to untreated disposal of sewage into the freshwater lens from septic tanks or damaged pipelines. Although there are 2 sewerage treatment plants in L. Gan, neither of them is currently operated regularly.

The total and fecal coliform levels in all 10 locations exceed the limits by the US EPA shown in Table 3-7 for crops used for food. As E. Coli is the major component of fecal coliform, and the fecal coliform results are higher than 1000 MPN/100 mL for 4 locations (Gan_04, Gan_07, Gan_08, Gan_09 and Gan_10), it can be interpreted from Table 3-8 that these locations are unsuitable for root crop irrigation and low growing crops. They are also potentially unsuitable for leaf crops and high-growing crops. Consequently, none of the sampled L. Gan locations have water suitable for drinking or irrigation. It is not recommended to use this water directly for these purposes without disinfection. WHO Standards (citation) indicate that faecal coliform must not be detectable in any 100ml sample of water

It is also important to note that the control location (Gan_10) which is a mosque located in the island has both total and fecal coliform levels greater than 2420 MPN/100mL. As the water is used for ablution, it is recommended to discontinue use until the water can be disinfected prior to use. Alternatively, desalinated water supplied by the newly commissioned water treatment plant should be used for all purposes in the mosque. The microbiological testing at L. Gan is recommended to be conducted regularly to confirm the level of contamination. E. Coli testing should be conducted along with total and fecal coliform.

6.2. L. Isdhoo

6.2.1. Physiochemical analysis

Overall, the physiochemical results fall within permissible limits when measured against both national and international standards outlined in Table 5-5, Table 5-6 and Table 5-7, with one sample having two exceptions. The sample Isd_04 exhibits an excessively high level of TDS (621 mg/L) that surpasses the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022). High levels of TDS can have a slight to moderate effect on usage for irrigation (Epa et al., 2004).

Sample Isd_04 also has an excessively high level of Chloride (275 mg/L) that surpasses the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022). Despite the chloride concentrations being within acceptable limits specified in national and international standards for all samples except Isd_04, the level of chloride in all 10 samples renders them highly unsuitable for use with sensitive crops with specific ion toxicity towards chloride, as outlined by (Epa et al., 2004).

The samples Isd_04 and Isd_07 exhibited higher color levels measured in Hazen units (8.2 and 6.8 Hazens respectively) compared to the other samples. However, there were no available standards that provided color measurements specifically in Hazen units, making it difficult to draw comparisons.

The results of groundwater quality results for 2 reed beds in L. Isdhoo, which were taken in November 2022 by Fenaka Corporation for groundwater monitoring purposes, are shown below in Table 6-2. The locations of pump stations and reed beds are shown in Figure 6.2, as per data received from Fenaka (2023). The pump stations are located close to Isd_01 and Isd_03. The conductivity and TDS levels at reed beds are quite high, in addition to phosphate levels, with both samples being yellow with particles. The reed beds installed in 2006 infiltrate treated wastewater directly into the ground, which could potentially cause deterioration in groundwater quality due to poor treatment and lack of maintenance of the treatment system.

Table 6-2: Groundwater quality results for samples taken close to pump stations in L. Isdhoo taken in November 2022 (Fenaka, 2023)

Sample Location	Reed bed 1	Reed bed 2
Physical Appearance	Yellow with particles	Yellow with particles
Conductivity (µS/cm)	1400	1410
рН	7.0	7.1
Salinity (‰)	0.7	0.7
Temperature (°C)	23.1	23.8
Total Dissolved Solids (mg/L)	701	705
Nitrate (mg/L)	2.7	2.7
Sulphide (µg/L)	<5 (LoQ 5 μg/L)	<5 (LoQ 5 μg/L)
Phosphate (mg/L)	24.8	1820

Figure 6.2: Isdhoo Sewerage System Locations

6.2.2. Microbiological analysis

Overall, L. Isdhoo has extremely poor microbiological water quality at all 10 locations sampled. Total coliform levels were too numerous to count and exceed measurable levels at 8 of the 10 locations sampled, and fecal coliform levels exceed measurable levels at 5 of the 8 locations sampled.

Overall, L. Isdhoo has extremely poor microbiological water quality at all 10 locations sampled. Total coliform levels were too numerous to count and exceed measurable levels at 6 of the 10 locations sampled. Faecal coliform levels exceed measurable levels at all the locations sampled. The results concur with the intermediate risk levels of E. Coli detected by (Hajare et al., 2021b) shown in Table 3-6. As a result, the groundwater in L. Isdhoo has deteriorated to wastewater quality levels. This could partly be due to poor and incomplete treatment of wastewater from an aging reed bed sewerage treatment mechanism, which discharges effluent into the ground.

The total and fecal coliform levels in all 10 locations exceed the limits by the US EPA shown in Table 3-7 for crops used for food. As E. Coli is the major component of fecal coliform, and the fecal coliform results are higher than 1000 MPN/100 mL for 6 locations (Isd_02, Isd_03, Isd_06. Isd_07, Isd_09 and Isd_10), it can be interpreted from Table 3-8 that these locations are unsuitable for root crop irrigation and low growing crops. They are also potentially unsuitable for leaf crops and high-growing crops. Consequently, none of the sampled L. Isdhoo locations have water suitable for drinking or irrigation. It is not recommended to use this water directly for these purposes without disinfection.

It is also important to note that the control location (lsd_01) which is a mosque located in the island has total coliform level greater than 2420 MPN/100 mL, and fecal coliform levels of 138 MPN/100 mL. As the water is used for ablution, it is recommended to discontinue use until the water can be disinfected prior to use.

The microbiological testing at L. Isdhoo is recommended to be conducted regularly to confirm the level of contamination. E. Coli testing should be conducted along with total and fecal coliform.

6.3. L. Kalaidhoo

6.3.1. Physiochemical analysis

Overall, the physiochemical results fall within permissible limits when measured against both national and international standards outlined in Table 5-10 and Table 5-11 with one exception. The sample Kal_03 exhibits a slightly high pH of 8.6 that does not fall within the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022).

Despite the chloride concentrations being within acceptable limits specified in national and international standards for all samples, the level of chloride in all 10 samples renders them highly unsuitable for use with sensitive crops with specific ion toxicity towards chloride, as outlined by (Epa et al., 2004).

The samples Kal_01, Kal_03, Kal_04, Kal_09, and Kal_10 exhibited higher color levels measured in Hazen units compared to the other samples. However, there were no available standards that provided color measurements specifically in Hazen units, making it difficult to draw comparisons. Additionally, Kal_04 had a not agreeable odour.

The results of groundwater quality results for 3 reed beds in L. Kalaidhoo, which were taken in November 2022 by Fenaka Corporation for groundwater monitoring purposes, are shown below in Table 6-3. The locations of pump stations and reed beds are shown in Figure 6.3, as per data received from Fenaka (2023). The pump stations are located close to Kal_05 and Kal_10. The conductivity and TDS levels are high in Reed Bed 3, with abnormally high nitrate levels in all 3 reed beds. The reed beds installed in 2006 infiltrate treated wastewater directly into the ground, which could potentially cause deterioration in groundwater quality due to improper treatment and lack of maintenance of the treatment system.

Table 6-3: Groundwater quality results for samples taken close to pump stations in L. Kalaidhoo taken in November 2022 (Fenaka, 2023)

Sample Location	Reed bed 1	Reed bed 2	Reed bed 3
Physical Appearance	Cloudy with particles	Pale yellow with particles	Pale yellow with particles
Conductivity (µS/cm)	606	903	1137
pH	7.4	7.4	7.3
Salinity (‰)	0.29	0.44	0.56
Temperature (°C)	25.1	25.2	25.2
Total Dissolved Solids (mg/L)	303	452	568
Nitrate (mg/L)	17.1	41.9	83.6
Sulphide (μg/L)	<5 (LoQ 5 μg/L)	6	8
Phosphate (mg/L)	0.28	2.7	2.04

Figure 6.3: L. Kalaidhoo Sewerage System Locations

6.3.2. Microbiological analysis

Overall, L. Kalaidhoo has extremely poor microbiological water quality at all 10 locations sampled. Total coliform levels were too numerous to count and exceed measurable levels at all 10 locations sampled. Faecal coliform levels exceed measurable levels at 3 of the 10 locations sampled, and the remaining 7 locations have high fecal coliform levels greater than 75 MPN/100mL. The results concur with the high-risk levels of E. Coli detected by (Hajare et al., 2021b) shown in Table 3-6. As a result, the groundwater in L. Kalaidhoo has deteriorated to wastewater quality levels. This could be in part due to poor treatment of wastewater from an aging reed bed sewerage treatment mechanism, which discharges wastewater into the ground.

The total and fecal coliform levels in all 10 locations exceed the limits by the US EPA shown in Table 3-7 for crops used for food. As E. Coli is the major component of fecal coliform, and the fecal coliform results are higher than 1000 MPN/100 mL for 4 locations (Kal_01, Kal_03, Kal_08, and Kal_10), it can be interpreted from

Table 3-8 that these locations are unsuitable for root crop irrigation and low growing crops. They are also potentially unsuitable for leaf crops and high-growing crops. Consequently, none of the sampled locations in L. Kalaidhoo have water suitable for drinking or irrigation. It is not recommended to use this water directly for these purposes without disinfection.

It is also important to note that the control location (Kal_10) which is a which is a mosque located in the island has both total and fecal coliform levels greater than 2420 MPN/100mL. As the water is used for ablution, it is recommended to discontinue use until the water can be disinfected prior to use.

The microbiological testing at L. Kalaidhoo is recommended to be conducted regularly to confirm the level contamination. E. Coli testing should be conducted along with total and fecal coliform.

6.4. L. Dhanbidhoo

6.4.1. Physiochemical analysis

Overall, most of the physiochemical results fall within permissible limits when measured against both national and international standards outlined in Table 5-5, Table 5-6 and Table 5-7, with four samples having 10 exceptions. The samples Dhab_01, Dhab_02, Dhab_03, and Dhab_08 exhibits high levels of TDS (780mg/L, 591 mg/L, 1255 mg/L, and 588 mg/L respectively) that surpass the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022). High levels of TDS can have a slight to moderate effect on usage for irrigation (Epa et al., 2004).

The samples Dhab_01 and Dhab_03 exhibits high levels of Electrical Conductivity (1164 µs/cm and 1873 µs/cm respectively) that surpass the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022). Samples Dhab_01 and Dhab_03 also have excessively high levels of Chloride (265 mg/L and 515 mg/L) that surpasses the acceptable threshold specified in the URA Supply Water Quality Standard (URA, 2022). Despite the chloride concentrations being within acceptable limits specified in national and international standards for all samples except Dhab_01 and Dhab_03, the level of chloride in all 10 samples renders them highly unsuitable for use with sensitive crops with specific ion toxicity towards chloride, as outlined by (Epa et al., 2004).

The samples Dhab_01 and Dhab_04 exhibited higher color levels measured in Hazen units (6.2 and 5.4 Hazens respectively) compared to the other samples. However, there were no available standards that provided color measurements specifically in Hazen units, making it difficult to draw comparisons.

The results of groundwater quality results for 4 pump stations in L. Dhanbidhoo which were taken in November 2022 by Fenaka Corporation for groundwater monitoring purposes, are shown below in Table 6-4. The locations of pump stations and reed beds are shown in Figure 6.4, as per data received from Fenaka (2023). The pump stations are located close to Dhab_07, Dhab_08 and Dhab_09. The conductivity and TDS levels are high in PS 2. The locations contain reed beds installed in 2006 which previously used to infiltrate treated wastewater directly into the ground, which could potentially cause deterioration in groundwater quality due to improper treatment and lack of maintenance of the treatment system. Currently, wastewater is discharged into the open lagoon.

Table 6-4: Groundwater quality results for samples taken close to pump stations in L. Dhanbidhoo taken in November 2022

Sample Location	PS 1	PS 2	PS 3	PS 4
Physical Appearance	Clear with particles	Clear with particles	Clear with particles	Clear with particles
Conductivity (µS/cm)	517	1101	177.7	821
рН	7.2	7.4	7.4	7.4
Salinity (‰)	0.25	0.55	0.09	0.4
Temperature (°C)	23.4	23.1	23.3	23.1
Total Dissolved Solids (mg/L)	258	550	88.9	411
Nitrate (mg/L)	2.7	1.1	1.5	2.1
Sulphide (μg/L)	<5 (LoQ 5 μg/L)			
Phosphate (mg/L)	0.13	0.21	0.26	0.29

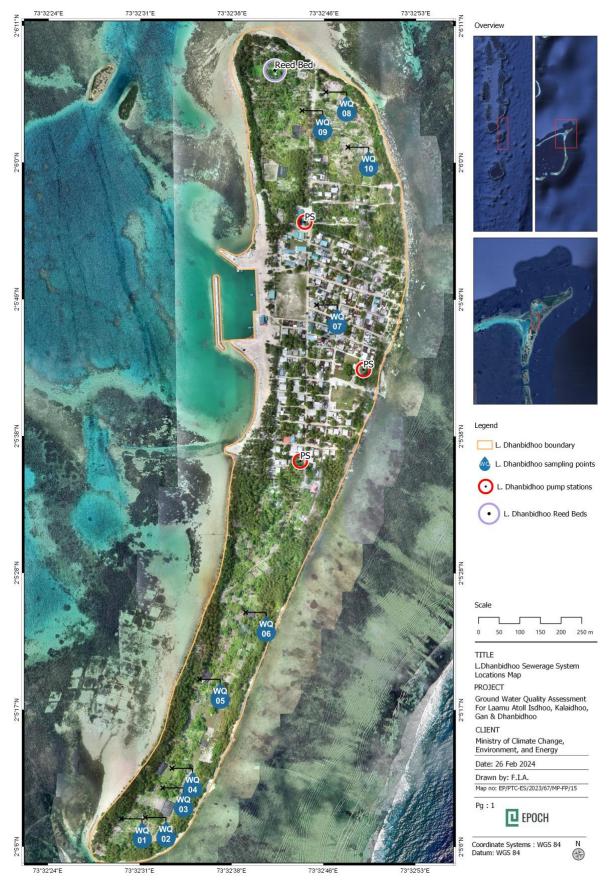


Figure 6.4: Dhanbidhoo Sewerage System Locations

6.4.2. Microbiological analysis

Overall, L. Dhanbidhoo has better microbiological water quality compared to the other 3 islands. Total coliform levels are too numerous to count and exceed measurable levels at 5 of the 10 locations sampled. Feacal coliform levels exceed measurable levels at 1 of the 10 locations sampled, and the remaining locations have varying levels of fecal coliform. The results concur with the low-risk levels of E. Coli detected by (Hajare et al., 2021b) as shown in Table 3-6. The groundwater in Dhab_10 has deteriorated to wastewater quality levels, while Dhab_02, Dhab_04, and Dhab_09 also have highly contaminated water levels.

The total and fecal coliform levels in all 10 locations exceed the limits by the US EPA shown in Table 3-7 for crops used for food. As E. Coli is the major component of fecal coliform, and the fecal coliform results are higher than 1000 MPN/100 mL for 3 locations (Dhab_02, Dhab_04, and Dhab_10), it can be interpreted from Table 3-8 that these locations are unsuitable for root crop irrigation and low growing crops. They are also potentially unsuitable for leaf crops and high-growing crops. Consequently, none of the sampled L. Dhanbidhoo locations have water suitable for drinking or irrigation. It is not recommended to use this water directly for these purposes without disinfection.

It is also important to note that the control location (Dhab_07) which is a which is a mosque located in the island has total coliform level at 261 MPN/100mL and fecal coliform levels at 78 MPN/100mL. As the water is used for ablution, it is recommended to discontinue use until the water can be disinfected prior to use.

The microbiological testing at L. Dhanbidhoo is recommended to be conducted regularly to confirm the level of contamination. E. Coli testing should be conducted along with total and fecal coliform.

7. Conclusion and Recommendations

Water Sampling was carried out on four islands from 5-7th February 2024. Methodologies approved in the inception stage were followed, in line with relevant international groundwater sampling standards. Logistical arrangements were made to ensure that water samples reached the laboratory within the stipulated maximum allowable water storage period. Stringent sample labeling and documentation procedures were followed, as well as appropriate water storage conditions.

The results indicated all 4 islands had generally acceptable physiochemical parameter ranges. However, certain samples had high TDS, color levels, and an unpleasant odor. Samples from all islands had varying chloride levels which can be potentially harmful to chloride-sensitive crops. Microbiological components were high in all samples. Importantly, the sample size was the same regardless of island size, making deriving definitive conclusions difficult, especially for larger islands. Therefore, it is crucial to determine sample numbers based on island size and continuously monitor groundwater conditions.

As all 40 locations tested had varying levels of total and fecal coliform, it is important to retest these two parameters, and include E. Coli testing for future groundwater assessments. Additionally, groundwater in these locations should not be used for irrigation, unless they are disinfected prior to use to confirm the absence of fecal coliform and E. Coli. Furthermore, positive total and fecal coliform results beyond measurable limits were found for the control site (mosque) in L. Gan and L. Dhanbidhoo, and high levels in both L. Isdhoo and L. Kalaidhoo as well. As water in mosques are used for ablution, it is imperative that groundwater be discontinued for further use until it can be disinfected for all 4 mosques.

A major limitation of this study is that pesticides were not tested. For future groundwater monitoring studies, it is highly recommended to include pesticide testing. This is because pollution due to contamination from sewerage systems, or agrochemicals can only be differentiated through pesticide testing based on the findings of this report.

Relevant stakeholders, such as local councils should be informed about The Water Resources Protection and Management Regulation (Regulation No: 2021/R-22), which includes a framework for continuously monitoring groundwater conditions, which is recommended to be followed across all islands.

7.1. Recommendations

For future groundwater studies the following measures are recommended:-

- Determine sample size based on island size, and number of agricultural plots
- Include E. Coli testing for future groundwater assessments
- Include pesticide testing as a groundwater testing parameter
- · Assess the volume and stress level of freshwater lens through hydrogeologic assessments
- Assess the level of pesticide residue on produce using techniques such as gas chromatography coupled with mass spectrometry.
- Conduct soil testing to assess the infiltration of pesticides. Certain parameters include nitrogen, phosphorous, potassium, calcium, sulfur, magnesium, iron, manganese, boron and molybdenum.

The following general measures are recommended: -

- Discontinue groundwater usage in mosques until water can be disinfected
- Inform relevant stakeholders (local councils, atoll councils, etc..) about The Water Resources Protection and Management Regulation

8. References

- Ajila, M. (2021). Impact of Agricultural Chemical Inputs on Human Health and Environment in Maldives. https://www.researchgate.net/publication/356893421
- ASTM. (2019). D4448 01 Standard Guide for Sampling Ground-Water Monitoring Wells.
- Barthiban, S., Lloyd, B. J., & Maier, M. (2012). Sanitary Hazards and Microbial Quality of Open Dug Wells in the Maldives Islands. *Journal of Water Resource and Protection*, 04(07), 474–486. https://doi.org/10.4236/jwarp.2012.47055
- Deng, C., & Bailey, R. (2019). A modeling approach for assessing groundwater resources of a large coral island under future climate and population conditions: Gan Island, Maldives. *Water* (Switzerland), 11(10). https://doi.org/10.3390/w11101963
- Epa, U., Supply, W., Resources Division, W., & Smith, C. (2004). 2012 Guidelines for Water Reuse.
- Hajare, R., Labhasetwar, P., & Nagarnaik, P. (2021a). Assessment of Health Risk and Detailed Evaluation of Causative Factors Associated with Use of Contaminated Groundwater in the Remote Atolls. *Water, Air, and Soil Pollution*, 232(5). https://doi.org/10.1007/s11270-021-05149-5
- Hajare, R., Labhasetwar, P., & Nagarnaik, P. (2021b). Assessment of Health Risk and Detailed Evaluation of Causative Factors Associated with Use of Contaminated Groundwater in the Remote Atolls. *Water, Air, and Soil Pollution*, 232(5). https://doi.org/10.1007/s11270-021-05149-5
- Jeong, H., Kim, H., & Jang, T. (2016). Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South korea. *Water (Switzerland)*, 8(4). https://doi.org/10.3390/w8040169
- Ministry of Environment. (2020). Baseline Assessment Report for Groundwater Resource Management and Aquifer Protection in Maldives.
- Ministry of Environment, C. C. and T. (2023). Baseline Assessment Report for Assessing Groundwater Resources and Design of Aquifer Recharge Systems in Selected Islands of Maldives.
- Ministry of Environment Climate Change and Technology. (2022). Baseline Assessment On National Use Of Chemicals And Associated Risks.
- Ministry of Environment Climate Change and Technology. (2023). Baseline Report on Agricultural Practices in Laamu Atoll.
- Muian, Z., & Kuan, W. K. (2022). Effects of Fertilization to Groundwater Contamination. *Environment and Ecology Research*, 10(1), 60–68. https://doi.org/10.13189/eer.2022.100106
- Parker, S. Y., Parchment, K. F., & Gordon-Strachan, G. M. (2023). The burden of water insecurity: a review of the challenges to water resource management and connected health risks associated with water stress in small island developing states. *Journal of Water and Climate Change*, 14(12), 4404–4423. https://doi.org/10.2166/wcc.2023.239

- Raheja, H., Goel, A., & Pal, M. (2023). A holistic assessment of groundwater quality for drinking and irrigation purposes. *Water Practice & Technology*. https://doi.org/10.2166/wpt.2023.228
- Raheja, H., Goel, A., & Pal, M. (2024). Assessment of groundwater quality and human health risk from nitrate contamination using a multivariate statistical analysis. *Journal of Water and Health*. https://doi.org/10.2166/wh.2024.291
- Shahmirnoori, A., Hasani Zonoozi, M., & Samadi, M. (2023). Evaluating groundwater quality using health risk assessment and irrigation indexes: Saveh Aquifer, Iran. *Water Practice & Technology*, *18*(12), 3333–3346. https://doi.org/10.2166/wpt.2023.216
- The National Environmental (Ambient Water Quality) Regulations, No. 01 of 2019, 2019. Colombo: The Gazette of the Democratic Socialist Republic of Sri Lanka.
- United States Environmental Protection Agency. (2023). *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*.
- World Health Organization. (2006). *Guidelines for the safe use of wastewater, excreta, and greywater.* World Health Organization.

9. ANNEXES

Annex 1 - Groundwater quality testing results from review of EIA Reports (2015 - 2023)

Annex 2 - Water Quality Sampling Locations

Annex 3 - Laboratory Results

Annex 4 - Water Quality Result Graphs

Annex 5 - Correlation Matrices

Annex 6 – Framework for groundwater quality monitoring for agrochemical contamination

Island	Sample	Physical Appearance	Conductivity (µS/cm)	рН	Salinity (ppt)	Temperature (°C)	Total Dissolved Solids (mg/L)	Nitrate (mg/L)	Sulphate (mg/L)	Sulphide (mg/L)	Phosphate (mg/L)	Dissolved Oxygen (mg/L)	Chemical Oxygen Demand (mg/L)	Biological Oxygen Demand (mg/L)	Total Petroleum Hydrocarbon (mg/L)	Total Coliform (MPN/100ml)	Faecal Coliform (MPN/100ml)	Sampled Date
		1			1		EIA to	r Proposed Ro	ad Developme	ent in Gan, Laa	mu Atoll (2023)		1	1			1	
Gan	G1	Clear With Particles	745	7.9	0.36	24	372	1	31	<5 (LoQ 5 μg/L)	-	7.46	-	-	<0.036 (LoQ 0.036 mg/L)	411 (13/04/2023 15:00)	-	11-04-2023 3:00 AM
Gan	G2	Clear With Particles	981	7.4	0.48	23.9	490	5.5	42	<5 (LoQ 5 μg/L)	-	5.54	-	-	<0.036 (LoQ 0.036 mg/L)	>2420 (13/04/2023 15:00)	-	11-04-2023 3:00:00 AM
Gan	G3	Clear With Particles	762	7.4	0.38	23.9	381	11.1	29	<5 (LoQ 5 μg/L)	-	5.84	-	-	<0.036 (LoQ 0.036 mg/L)	30 (13/04/2023 15:00)	-	11-04-2023 3:00:00 AM
Gan	G4	Clear With Particles	688	7.1	0.34	24	344	0.8	29	<5 (LoQ 5 μg/L)	-	2.02	-	-	<0.036 (LoQ 0.036 mg/L)	308 (13/04/2023 15:00)	-	11-04-2023 3:00:00 AM
Gan	G5	Clear With Particles	924	7.5	0.46	23.8	462	6.9	27	<5 (LoQ 5 μg/L)	-	6.48	-	-	0.552	980 (13/04/2023 15:00)	-	11-04-2023 3:00:00 AM
		1				EIA for the	proposed Caus	seway Develo	pment betwee	n Kalaidhoo ar	d Dhanbidhoo,	Laamu Atoli (20	023)			13.00)	1	
Not Stated	KDGW1	Clear With Particles	-	7.21	0.64	21.5	655	-	-	-	-	-	-	-	-	-	-	11-05-2023 2:30:00 AM
Not Stated	KDGW2	Clear With Particles	-	7.43	0.94	21.7	929	-	-	-	-	-	-	-	-	-	-	11-05-2023 2:42:00 AM
Not Stated	KDGW3	Clear With Particles Clear With	-	7.22	0.45	21.8	395	-	-	-	-	-	-	-	-	-	-	11-05-2023 2:59:00 AM 11-05-2023
Not Stated	KDGW4	Particles	-	7.88	0.39	21.6	413	-	-	-	-	-	-	-	-	-	-	3:20:00 AM
						EIA for the Pro	posed Establis	hment of wat	er network in	L.Gan, L.Isdho	o, L.Kalaidhoo,	L.Maamendhoo	(2021)					
Kalaidhoo	G1, G2	Clear With Particles	858	8.09	0.42	23.9	429	-	-	-	-	-	-	-	-	>2420 (15/04/2021 13:00)	78 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Kalaidhoo	G3	Pale Yellow with Particles	1036	7.38	0.51	24	518	-	-	-	-	-	-	-	-	22 (15/04/2021 13:00)	Not Detected (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Kalaidhoo	G4	Clear With Particles	673	7.37	0.33	24	336	-	-	-	-	-	-	-	-	131 (15/04/2021 13:00)	Not Detected (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Kalaidhoo	G5	Clear With Particles	755	7.21	0.37	24	377	-	-	-	-	-	-	-	-	155 (15/04/2021 13:00)	1 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Isdhoo	G1, G2	Clear With Particles	536	7.45	0.26	23.9	268	-	-	-	-	-	-	-	-	33 (15/04/2021 13:00)	1 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Isdhoo	G3	Clear With Particles	549	7.22	0.27	24	275	-	-	-	-	-	-	-	-	27 (15/04/2021 13:00)	Not Detected (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Isdhoo	G4	Clear With Particles	591	7.38	0.29	24	296	-	-	-	-	-	-	-	-	243 (15/04/2021 13:00)	8 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Isdhoo	G5	Clear With Particles	729	7.28	0.36	24.1	364	-	-	-	-	-	-	-	-	44 (15/04/2021 13:00)	1 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Gan	G1	Clear With Particles	1972	7.6	1	24.1	986	_	_	-		-	-	-		113 (15/04/2021 13:00)	54 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Gan	G2	Pale Yellow with Particles	761	7.41	0.37	24	381	_	-	-		-	-	-	-	1120 (15/04/2021 13:00)	3 (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Gan	G3	Clear With Particles	601	7.34	0.29	24	301	-	-	-	-	-	-	-	_	40 (15/04/2021 13:00)	Not Detected (15/04/2021 13:00)	14-04-2021 11:00:00 AM
Gan	G4	Clear With Particles	635	7.44	0.31	23.8	318	_	-	-	-	-	-	-	-	122 (15/04/2021 13:00)	57 (15/04/2021 13:00)	14-04-2021 11:00:00 AM

Island	Sample	Physical Appearance	Conductivity (µS/cm)	рН	Salinity (ppt)		Total Dissolved Solids (mg/L)	Nitrate (mg/L)	Sulphate (mg/L)	Sulphide (mg/L)	Phosphate (mg/L)	Dissolved Oxygen (mg/L)	Chemical Oxygen Demand (mg/L)	Biological Oxygen Demand (mg/L)	Total Petroleum Hydrocarbon (mg/L)	Total Coliform (MPN/100ml)	Faecal Coliform (MPN/100ml)	Sampled Date
						EI	A for the Prop	osed Constru	ctions of water	Supply Facilit	y at L.Dhanbidh	100 (2021)						
Dhanbidhoo	DB ROP	Clear With Particles	-	7.35	0.35	22.3	355	-	-	-	i	<1 (LoQ 1 mg/L	-	-	-	10 (08/08/2021 15:00)	3 (08/08/2021 15:00)	04-08-2021 2:00:00 AM
Dhanbidhoo	DB ROA	Clear With Particles	-	7.67	0.39	23.2	397	-	-	-	-	4.32	-	-	-	1203 (08/08/2021 15:00)	179 (08/08/2021 15:00)	04-08-2021 2:00:00 AM
Dhanbidhoo	DB ROC	Clear With Particles	-	8.05	0.18	23.3	188	-	-	-	1	3.87	-	-	-	(08/08/2021	>2420 (08/08/2021 15:00)	04-08-2021 2:00:00 AM
							EIA for the	Proposed Sea	Cucumber De	velopment Pro	ject at L. Gan (2	2017)						
Gan	GW-001	Clear With Particles	-	-	-	-	1	1.3	-	-	0.15	-	23.6	11	-	-	>2420	25-09-2016 12:00:00 AM
Gan	GW-002	Clear With Particles	-	-	-	-	-	2	-	-	0.11	-	23.1	3	-	>2420	44	25-09-2016 12:00:00 AM
Gan	GW-003	Clear	-	-	-	-	-	20.1	-	-	0.21	-	15.7	3	-	117	4	25-09-2016 12:00:00 AM
Gan	GW-004	Clear	-	-	-	-		6.2	-	-	0.54	-	18	1	-	-	_	25-09-2016 12:00:00 AM
Gan	GW-005	Clear With Particles	-	-	-	-	-	26	-	-	0.13	-	19.2	11	-	687	-	25-09-2016 12:00:00 AM
						EIA	for the Const	ruction of Isla	nd waste Mar	agement Cent	er at L.Dhanbid	lhoo (2017)						
Dhanbidhoo	GW 1	Pale Yellow with Particles	432	7.88	0.21	20	-	0.5	-	-	-	-	-	-	-	-	-	03-07-17
Dhanbidhoo	GW 2	Pale Yellow with Particles	835	7.55	0.41	19.9	1	0.7	-	-	-	-	-	-	-	-	-	03-07-17

Average annual Groundwater quality parameters from review of EIA Reports (2015 – 2023)

Average pH								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2017	7.72	-	-	-				
2021	7.69	7.45	7.33	7.51				
2023	-	7.46	-	-				

Average Electrical Conductivity (µS/cm)								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2017	634	-	-	-				
2021	-	992	601	831				
2023	-	820	-	-				

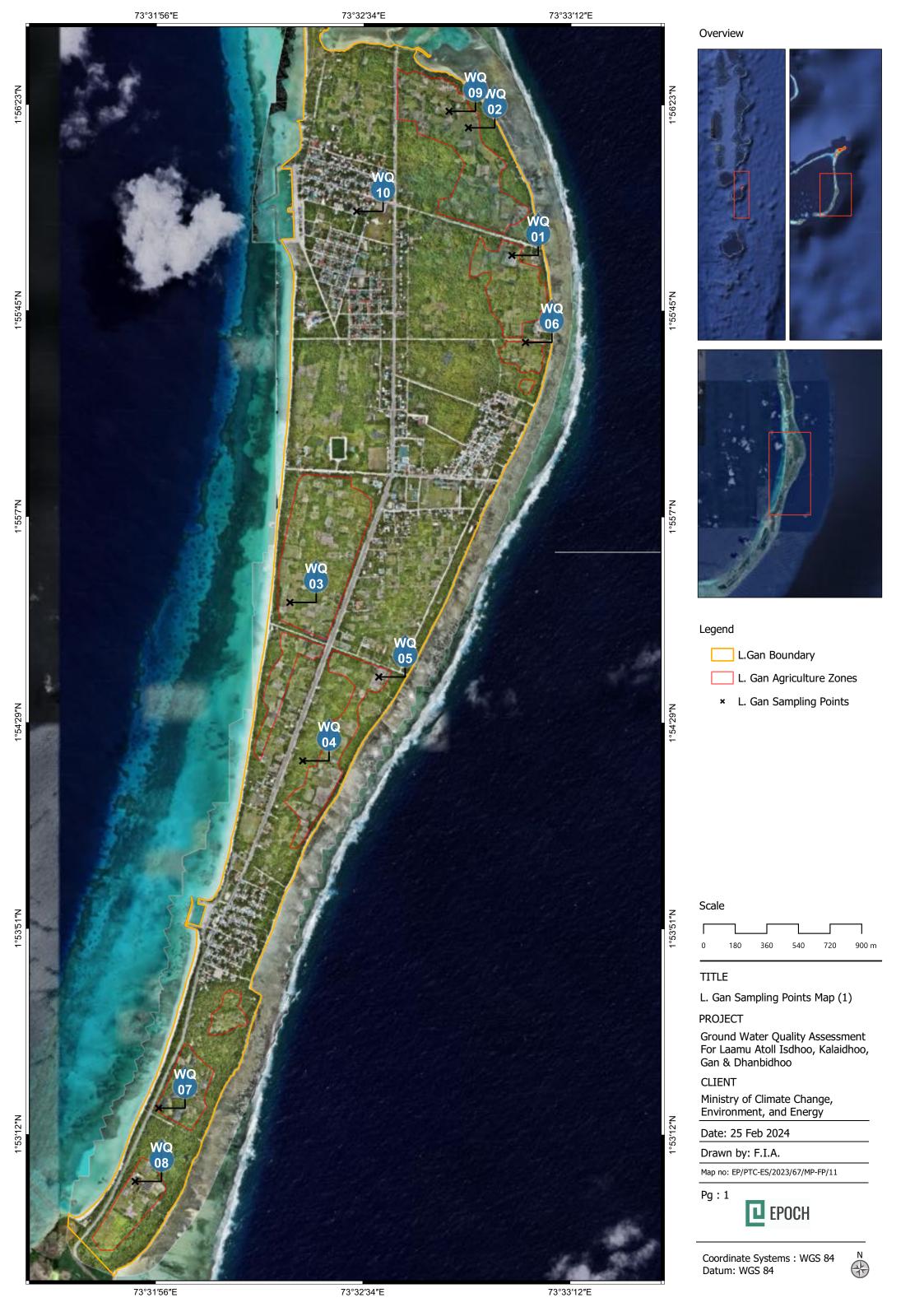
Average Salinity (ppt)								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2017	0.31	-	-	-				
2021	0.307	0.493	0.295	0.408				
2023	-	0.404	-	-				

Average Total Dissolved Solids (mg/L)								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2021	313	497	301	415				
2023	-	410	-	-				

Average	Average Dissolved Oxygen (mg/L)									
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo						
2021	4.10	-	-	-						
2023	-	5.47	-	-						

Average Nitrate concentration (mg/L)								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2016	-	11.1	-	-				
2017	0.6	-	-	-				
2023	-	5.06	-	-				

Average Sulfate concentration (mg/L)								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2023	-	31.6	-	-				


Average Phosphate concentration (mg/L)								
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo				
2016	-	0.228	-	-				

Average Biological Oxygen Demand (mg/L)				
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo
2016	-	5.80	-	-

Average	Average Chemical Oxygen Demand (mg/L)			
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo
2016	-	19.9	-	-

Averag	Average Total Coliform (MPN/ 100mL)			
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo
2016	-	1075	-	-
2021	1211	349	86.8	682
2023	-	830	-	-

Average	Average Faecal Coliform (MPN/ 100mL)			
year	Dhanbidhoo	Gan	Isdhoo	Kalaidhoo
2016	-	823	-	-
2021	867	28.5	2.5	19.75

DATA ID	Longitude	Latitude
wq01	73.55038	1.93206
wq02	73.54815	1.93862
wq03	73.53904	1.91419
wq06	73.55108	1.92758
wq09	73.54716	1.93947
wq10	73.54244	1.93432

Legend

L.Gan Boundary

L. Gan Agriculture Zones

X L. Gan Sampling Points

Scale

TITLE

L. Gan Sampling Points Map (2)

PROJECT

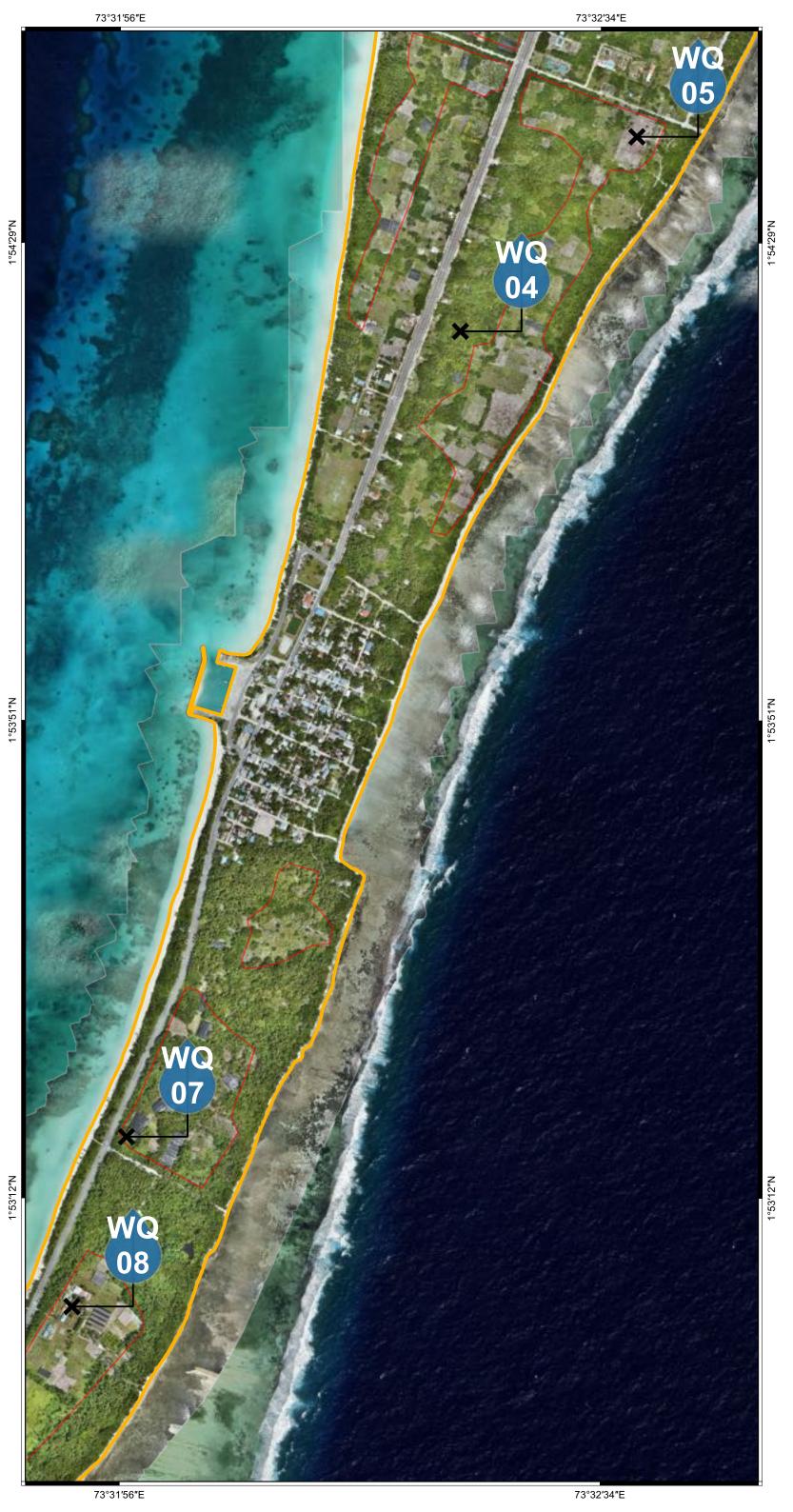
Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

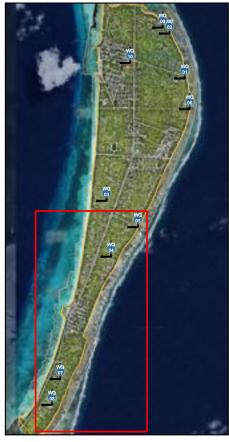
Ministry of Climate Change, Environment, and Energy

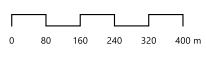
Date: 25 Feb 2024

Drawn by: F.I.A.


Map no: EP/PTC-ES/2023/67/MP-FP/11

Pg: 2


Coordinate Systems : WGS 84 Datum: WGS 84


DATA ID	Longitude	Latitude
wq04	73.5397	1.90604
wq05	73.54359	1.91036
wq07	73.53235	1.88816
wq08	73.53115	1.88439

Legend

L.Gan Boundary

L. Gan Agriculture ZonesL. Gan Sampling Points

Scale

TITLE

L. Gan Sampling Points Map (3)

PROJECT

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

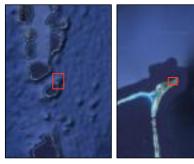
Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

Drawn by: F.I.A.

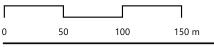
Map no: EP/PTC-ES/2023/67/MP-FP/11

Pg:3



Coordinate Systems : WGS 84 Datum: WGS 84

DATA ID	Longitude	Latitude
wq06	73.5763	2.12461
wq07	73.57688	2.12152
wq08	73.57486	2.11934
wq09	73.57161	2.12152
wq10	73.56953	2.11921


Legend

L.Isdhoo Boundary

L.Isdhoo Sampling Points

____ L. Isdhoo Agriculture Zones

Scale

L.Isdhoo Sampling Locations Map (2)

PROJECT

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

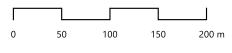
Drawn by: F.I.A.

Map no: EP/PTC-ES/2023/67/MP-FP/13

Pg:2

Coordinate Systems : WGS 84 Datum: WGS 84

DATA ID	Longitude	Latitude
wq01	73.58049	2.12679
wq02	73.58466	2.13094
wq03	73.58445	2.12837
wq04	73.58312	2.12373
wq05	73.58017	2.12191


Legend

L.Isdhoo Boundary

X L.Isdhoo Sampling Points

L. Isdhoo Agriculture Zones

Scale

TITLE

L. Isdhoo Sampling Points Map (3)

PROJECT

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

Drawn by: F.I.A.

Map no: EP/PTC-ES/2023/67/MP-FP/13

Pg : 3

Coordinate Systems : WGS 84 Datum: WGS 84

DATA ID	Longitude	Latitude
wq01	73.56722	2.11708
wq02	73.56818	2.11662
wq03	73.56825	2.11985
wq04	73.56522	2.11406

L. Kalaidhoo Boundary

L. Kalaidhoo Agriculture Zones

L. Kalaidhoo Sampling Points

L. Kalaidhoo Sampling Map (2)

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

Drawn by: F.I.A.

Map no: EP/PTC-ES/2023/67/MP-FP/12

Coordinate Systems : WGS 84 Datum: WGS 84

DATA ID	Longitude	Latitude
wq05	73.55971	2.11137
wq06	73.55643	2.11765
wq07	73.55786	2.11906
wq08	73.561	2.11927
wq09	73.55859	2.11461
wq10	73.55787	2.10822

Legend

L. Kalaidhoo Boundary

L. Kalaidhoo Agriculture Zones

X L. Kalaidhoo Sampling Points

Scale

TITLE

L. Kalaidhoo Sampling Points Map (3)

PROJECT

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

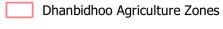
Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

Drawn by: F.I.A.

Map no: EP/PTC-ES/2023/67/MP-FP/12

Coordinate Systems : WGS 84 Datum: WGS 84


DATA ID	Longitude	Latitude
wq01	73.5416	2.08561
wq02	73.54212	2.08564
wq03	73.5425	2.08629
wq04	73.5427	2.08672
wq05	73.5433	2.08867
wq06	73.5443	2.09014

Legend

L.Dhanbidhoo Boundary

L.Dhanbidhoo sampling points

TITLE

L.Dhanbidhoo Sampling Points Map (2)

PROJECT

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

Drawn by: F.I.A.

Map no: EP/PTC-ES/2023/67/MP-FP/14

Pg:2

Coordinate Systems: WGS 84 Datum: WGS 84

Overview

DATA ID	Longitude	Latitude
wq07	73.54584	2.09688
wq08	73.54604	2.10155
wq09	73.54552	2.10114
wq10	73.54652	2.10034

Legend

L.Dhanbidhoo Boundary

L.Dhanbidhoo sampling points

Dhanbidhoo Agriculture Zones

Scale 75 100 m

TITLE

L.Dhanbidhoo Sampling Points Map (3)

PROJECT

Ground Water Quality Assessment For Laamu Atoll Isdhoo, Kalaidhoo, Gan & Dhanbidhoo

CLIENT

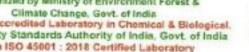
Ministry of Climate Change, Environment, and Energy

Date: 25 Feb 2024

Drawn by: F.I.A.

Map no: EP/PTC-ES/2023/67/MP-FP/14

Coordinate Systems: WGS 84 Datum: WGS 84


Corp. off. : # 3-11-482/2, Plot No.1, 3rd Floor. Sai Sadan Complex, Above Punjab National Bani Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail Web : www.carclabs.in

carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

ISSUED TO

Epoch Associates Private Limited

G. Rosary West, 3rd Floor, Husnuheena Magu, Male' 20101, Republic of Maldives

Sub Contracted by NSURE Private Limited

Issue Date: 16.02.2024

Sample Registration Date: 09.02.2024

Sample Collection Date: 06.02.2024

TEST RESULTS

SAMPLE NAME	TEST PARAMETER	UNITS	RESULTS	**ACCEPTABLE LIMITS	SATISFACTORY / UNSATISFACTORY
	Turbidity	NTU	3.7		
	Temperature	°C	25.3		
	Colour	Hazen	7.6	Max. 5.0	Unsatisfactory
	Electric Conductivity	μs/cm	546	Max 1000	Satisfactory
	рН		7.7	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	26		1
	Total Dissolved Solids	mg/L	364	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		-
	Biological Oxygen Demand	mg/L	05	40	-
	Chemical Oxygen Demand	mg/L	18	50	1
	Chloride	mg/L	78	Max 200	Satisfactory
Kalai - Ground Water 01	Nitrates	mg/L	2.5	Max 50	Satisfactory
Kaiai - Ground Water UT	Nitrite	mg/L	<0.1		-
	Sulphate	mg/L	9.7	Max 250	Satisfactory
	Magnesium as Mg	mg/L	19	30	Satisfactory
	Calcium as Ca	mg/L	46	75	Satisfactory
	Iron as Fe	mg/L	0.07	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	20	<200	Satisfactory
	Potassium as K	mg/L	5.2	0 – 50	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web

: www.carelabs.in

TESTING SERVICES

Kalai - Ground Water 01	Salinity	ppt	0.31		
Cont.	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.1		
	Colour	Hazen	3.8	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	364.5	Max 1000	Satisfactory
	pH		7.7	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	26		
	Total Dissolved Solids	mg/L	243	500	Satisfactory
	Dissolved Oxygen	mg/L	6.2		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	15	50	
	Chloride	mg/L	73	Max 200	Satisfactory
	Nitrates	mg/L	1.8	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
Kalai - Ground Water 02	Sulphate	mg/L	7.8	Max 250	Satisfactory
	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	42	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	14.6	<200	Satisfactory
	Potassium as K	mg/L	3.5	0 – 50	Satisfactory
	Salinity	ppt	0.30		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	2.6		
	Temperature	°C	25.2		
	Colour	Hazen	7.2	Max. 5.0	Unsatisfactory
Kalai - Ground Water 03	Electric Conductivity	μs/cm	282	Max 1000	Satisfactory
	рН	-	8.6	6.5-8.5	Unsatisfactory
	Alkalinity as CaCO₃	mg/L	51		
	Total Dissolved Solids	mg/L	188	500	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web : www.carelabs.in **TESTING SERVICES**

Dissolved Oxygen						
Chemical Oxygen Demand mg/L 0g 50		Dissolved Oxygen	mg/L	6.4		
Chloride		Biological Oxygen Demand	mg/L	<05	40	
Nitrates		Chemical Oxygen Demand	mg/L	09	50	
Nitrite		Chloride	mg/L	62	Max 200	Satisfactory
Sulphate		Nitrates	mg/L	1.6	Max 50	Satisfactory
Magnesium as Mg		Nitrite	mg/L	<0.1		
Calcium as Ca mg/L 33 75 Satisfactory		Sulphate	mg/L	7.1	Max 250	Satisfactory
Iron as Fe		Magnesium as Mg	mg/L	12	30	Satisfactory
Cont. Itiol as Fe		Calcium as Ca	mg/L	33	75	Satisfactory
Ammonia mg/L <0,1 Max 0.5 Satisfactory		Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
Acidity mg/L <0.1	oont.	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
Total-Phosphorous mg/L <0.1 5.0 Satisfactory		Odour		Agreeable	Agreeable	Satisfactory
Total Nitrogen mg/L <0.1 100 Satisfactory		Acidity	mg/L	<0.1		
Total Nitrogen mg/L <0.1 100 Satisfactory		Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Sodium as Na		Total Nitrogen	mg/L		100	Satisfactory
Potassium as K mg/L 2.9 0 - 50 Satisfactory			mg/L	10.8	<200	
Salinity ppt 0.2			mg/L			Satisfactory
Turbidity NTU 3.5 Temperature °C 25.1 Colour Hazen 7.1 Max. 5.0 Unsatisfactory Electric Conductivity μs/cm 356 Max 1000 Satisfactory PH 7.5 6.5-8.5 Satisfactory Alkalinity as CaCO ₃ mg/L 20 Total Dissolved Solids mg/L 239 500 Satisfactory Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L <05 40 Chemical Oxygen Demand mg/L 13 50 Chloride mg/L 70 Max 200 Satisfactory Nitrates mg/L 1.9 Max 50 Satisfactory Nitrates mg/L <0.1 Sulphate mg/L 7.5 Max 250 Satisfactory Magnesium as Mg mg/L 16 30 Satisfactory			ppt	0.2		
Temperature		Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
Colour Hazen 7.1 Max. 5.0 Unsatisfactory		Turbidity	NTU	3.5		
Electric Conductivity		Temperature	°C	25.1		
PH		Colour	Hazen	7.1	Max. 5.0	Unsatisfactory
Alkalinity as CaCO ₃ mg/L 20 Total Dissolved Solids mg/L 239 500 Satisfactory Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L <05 40 Chemical Oxygen Demand mg/L 13 50 Chloride mg/L 70 Max 200 Satisfactory Nitrates mg/L 1.9 Max 50 Satisfactory Nitrite mg/L <0.1 Sulphate mg/L 7.5 Max 250 Satisfactory Magnesium as Mg mg/L 16 30 Satisfactory		Electric Conductivity	μs/cm	356	Max 1000	Satisfactory
Kalai - Ground Water 04 Total Dissolved Solids mg/L 239 500 Satisfactory Biological Oxygen Demand mg/L 6.1 Biological Oxygen Demand mg/L 40 Chemical Oxygen Demand mg/L 13 50 Chloride mg/L 70 Max 200 Satisfactory Nitrates mg/L 1.9 Max 50 Satisfactory Nitrite mg/L <0.1		рН		7.5	6.5-8.5	Satisfactory
Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L 40 Chemical Oxygen Demand mg/L 13 50 Chloride mg/L 70 Max 200 Satisfactory Nitrates mg/L 1.9 Max 50 Satisfactory Nitrite mg/L <0.1 Sulphate mg/L 7.5 Max 250 Satisfactory Magnesium as Mg mg/L 16 30 Satisfactory		Alkalinity as CaCO₃	mg/L	20		
Biological Oxygen Demand mg/L <05 40		Total Dissolved Solids	mg/L	239	500	Satisfactory
Biological Oxygen Demand mg/L <05 40 Chemical Oxygen Demand mg/L 13 50 Chloride mg/L 70 Max 200 Satisfactory Nitrates mg/L 1.9 Max 50 Satisfactory Nitrite mg/L <0.1	Kalai Graund Water 04	Dissolved Oxygen	mg/L	6.1		
Chloride mg/L 70 Max 200 Satisfactory Nitrates mg/L 1.9 Max 50 Satisfactory Nitrite mg/L <0.1	Kaiai - Ground Water 04	Biological Oxygen Demand	mg/L	<05	40	
Nitrates mg/L 1.9 Max 50 Satisfactory Nitrite mg/L <0.1		Chemical Oxygen Demand	mg/L	13	50	
Nitrite mg/L <0.1 Sulphate mg/L 7.5 Max 250 Satisfactory Magnesium as Mg mg/L 16 30 Satisfactory		Chloride	mg/L	70	Max 200	Satisfactory
Sulphate mg/L 7.5 Max 250 Satisfactory Magnesium as Mg mg/L 16 30 Satisfactory		Nitrates	mg/L	1.9	Max 50	Satisfactory
Magnesium as Mg mg/L 16 30 Satisfactory		Nitrite	mg/L	<0.1		
		Sulphate	mg/L	7.5	Max 250	Satisfactory
Calcium as Ca mg/L 40 75 Satisfactory		Magnesium as Mg	mg/L	16	30	Satisfactory
		Calcium as Ca	mg/L	40	75	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor. Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail Web

: www.carelabs.in

carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

					T
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Not Agreeable	Agreeable	Unsatisfactory
	Acidity	mg/L	<0.1		
Kalai - Ground Water 04	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Cont.	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	12	<200	Satisfactory
	Potassium as K	mg/L	3.5	0 – 50	Satisfactory
	Salinity	ppt	0.23		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.3		
	Colour	Hazen	4.0	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	432	Max 1000	Satisfactory
	рН		7.9	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	36		
	Total Dissolved Solids	mg/L	289	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	15	50	
	Chloride	mg/L	75	Max 200	Satisfactory
	Nitrates	mg/L	1.9	Max 50	Satisfactory
Kalai - Ground Water 05	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.7	Max 250	Satisfactory
	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	42	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	16.3	<200	Satisfactory
	Potassium as K	mg/L	4.3	0 – 50	Satisfactory
	Salinity	ppt	0.25		

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

: carelabs.analytical@gmail.com IN THE FIELD OF

Web : www.carclabs.in **TESTING SERVICES**

Kalai Onousal Mate: 05		me/l			0.11.6.1
Kalai - Ground Water 05	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.1		
	Colour	Hazen	3.9	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	450	Max 1000	Satisfactory
	рН		7.9	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	35		
	Total Dissolved Solids	mg/L	302	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	15	50	
	Chloride	mg/L	76	Max 200	Satisfactory
	Nitrates	mg/L	2.2	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
Kalai - Ground Water 06	Sulphate	mg/L	8	Max 250	Satisfactory
	Magnesium as Mg	mg/L	15	30	Satisfactory
	Calcium as Ca	mg/L	38	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	18.1	<200	Satisfactory
	Potassium as K	mg/L	4.7	0 – 50	Satisfactory
	Salinity	ppt	0.26		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.3		
	Colour	Hazen	3.9	Max. 5.0	Satisfactory
	Electric Conductivity	µs/cm	424	Max 1000	Satisfactory
Kalai - Ground Water 07	pH	μ5/CIII 	7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	31	0.0-0.0	Galisiaciory
	Total Dissolved Solids	mg/L		500	Cotioft
			283		Satisfactory
	Dissolved Oxygen	mg/L	6.3		

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile. E-mail

+91 89392 24215

Web

carelabs.analytical@gmail.com IN THE FIELD OF

: www.carclabs.in

TESTING SERVICES

Biological Oxygen Demand mg/L <05						
Chloride		Biological Oxygen Demand	mg/L	<05	40	
Nitrates		Chemical Oxygen Demand	mg/L	14	50	
Nitrite		Chloride	mg/L	73	Max 200	Satisfactory
Sulphate		Nitrates	mg/L	1.9	Max 50	Satisfactory
Magnesium as Mg		Nitrite	mg/L	<0.1		
Calcium as Ca		Sulphate	mg/L	7.9	Max 250	Satisfactory
Iron as Fe		Magnesium as Mg	mg/L	16	30	Satisfactory
Ammonia mg/L <0,1 Max 0.5 Satisfactory		Calcium as Ca	mg/L	40	75	Satisfactory
Cont. Ammonia mg/L <0.1 Max 0.5 Satisfactory Odour Agreeable Agreeable Satisfactory Acidity mg/L <0.1	Kalai - Ground Water 07	Iron as Fe	mg/L	0.01	Max 0.3	Satisfactory
Acidity mg/L <0.1 -		Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
Acidity		Odour		Agreeable	Agreeable	Satisfactory
Total Nitrogen mg/L <0.1 100 Satisfactory Sodium as Na mg/L 16 <200 Satisfactory Potassium as K mg/L 4.2 0 – 50 Satisfactory Salinity ppt 0.25 Phosphate as PO4 mg/L <0.1 <5 Satisfactory Turbidity NTU 0.4 Temperature °C 25.2 Colour Hazen 3.3 Max. 5.0 Satisfactory Electric Conductivity μs/cm 591 Max 1000 Satisfactory pH 7.8 6.5-8.5 Satisfactory Alkalinity as CaCO ₃ mg/L 31 Total Dissolved Solids mg/L 394 500 Satisfactory Dissolved Oxygen mg/L 6.2 Choride mg/L 83 Max 200 Satisfactory Nitrates mg/L 2.8 Max 50 Satisfactory Nitrates mg/L 0.6 Max 250 Satisfactory Nitrate mg/L 0.1 Sulphate mg/L 10.6 Max 250 Satisfactory Magnesium as Mg mg/L 21 30 Satisfactory		Acidity	mg/L	<0.1		
Sodium as Na mg/L 16		Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Sodium as Na mg/L 16 <200 Satisfactory		Total Nitrogen	mg/L	<0.1	100	Satisfactory
Potassium as K mg/L 4.2 0 – 50 Satisfactory		_	mg/L	16	<200	,
Phosphate as PO4 mg/L <0.1 <5 Satisfactory		Potassium as K	mg/L	4.2	0 – 50	Satisfactory
Turbidity		Salinity	ppt	0.25		
Temperature		Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
Colour		Turbidity	NTU	0.4		
Electric Conductivity		Temperature	°C	25.2		
PH		Colour	Hazen	3.3	Max. 5.0	Satisfactory
Alkalinity as CaCO3		Electric Conductivity	μs/cm	591	Max 1000	Satisfactory
Total Dissolved Solids mg/L 394 500 Satisfactory		рН		7.8	6.5-8.5	Satisfactory
Dissolved Oxygen mg/L 6.2 Biological Oxygen Demand mg/L 06 40 Chemical Oxygen Demand mg/L 21 50 Chloride mg/L 83 Max 200 Satisfactory Nitrates mg/L 2.8 Max 50 Satisfactory Nitrite mg/L <0.1 Sulphate mg/L 10.6 Max 250 Satisfactory Magnesium as Mg mg/L 21 30 Satisfactory Calcium as Ca mg/L 45 75 Satisfactory		Alkalinity as CaCO₃	mg/L	31		
Kalai - Ground Water 08 Biological Oxygen Demand mg/L 06 40 Chemical Oxygen Demand mg/L 21 50 Chloride mg/L 83 Max 200 Satisfactory Nitrates mg/L 2.8 Max 50 Satisfactory Nitrite mg/L <0.1		Total Dissolved Solids	mg/L	394	500	Satisfactory
Chemical Oxygen Demand mg/L 21 50 Chloride mg/L 83 Max 200 Satisfactory Nitrates mg/L 2.8 Max 50 Satisfactory Nitrite mg/L <0.1		Dissolved Oxygen	mg/L	6.2		
Chloride mg/L 83 Max 200 Satisfactory Nitrates mg/L 2.8 Max 50 Satisfactory Nitrite mg/L <0.1	Kalai - Ground Water 08	Biological Oxygen Demand	mg/L	06	40	
Nitrates mg/L 2.8 Max 50 Satisfactory Nitrite mg/L <0.1		Chemical Oxygen Demand	mg/L	21	50	
Nitrite mg/L <0.1 Sulphate mg/L 10.6 Max 250 Satisfactory Magnesium as Mg mg/L 21 30 Satisfactory Calcium as Ca mg/L 45 75 Satisfactory		Chloride	mg/L	83	Max 200	Satisfactory
Sulphatemg/L10.6Max 250SatisfactoryMagnesium as Mgmg/L2130SatisfactoryCalcium as Camg/L4575Satisfactory		Nitrates	mg/L	2.8	Max 50	Satisfactory
Magnesium as Mg mg/L 21 30 Satisfactory Calcium as Ca mg/L 45 75 Satisfactory		Nitrite	mg/L	<0.1		
Calcium as Ca mg/L 45 75 Satisfactory		Sulphate	mg/L	10.6	Max 250	Satisfactory
		Magnesium as Mg	mg/L	21	30	Satisfactory
Iron as Fe mg/L 0.07 Max 0.3 Satisfactory		Calcium as Ca	mg/L	45	75	Satisfactory
		Iron as Fe	mg/L	0.07	Max 0.3	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web

: www.carclabs.in

TESTING SERVICES

	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Kalai - Ground Water 08 Cont.	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	20.5	<200	Satisfactory
	Potassium as K	mg/L	5.8	0 – 50	Satisfactory
	Salinity	ppt	0.32		-
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	1.3		1
	Temperature	°C	25.2		-
	Colour	Hazen	5.3	Max. 5.0	Unsatisfactory
	Electric Conductivity	μs/cm	306	Max 1000	Satisfactory
	рН		8.2	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	42		-
	Total Dissolved Solids	mg/L	204	500	Satisfactory
	Dissolved Oxygen	mg/L	6.2		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	11	50	
	Chloride	mg/L	65	Max 200	Satisfactory
	Nitrates	mg/L	1.7	Max 50	Satisfactory
Kalai - Ground Water 09	Nitrite	mg/L	<0.1		
Kalai - Ground Water 09	Sulphate	mg/L	7.3	Max 250	Satisfactory
	Magnesium as Mg	mg/L	13	30	Satisfactory
	Calcium as Ca	mg/L	34	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	11.5	<200	Satisfactory
	Potassium as K	mg/L	3.1	0 – 50	Satisfactory
	Salinity	ppt	0.21		<u></u>
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web : www.carclabs.in **TESTING SERVICES**

	Turbidity	NTU	1.6		
	Temperature	°C	25.1		
	Colour	Hazen	6.7	Max. 5.0	Unsatisfactory
	Electric Conductivity		339	Max 1000	Satisfactory
	pH	μs/cm 		6.5-8.5	<u> </u>
	Alkalinity as CaCO ₃	mg/L	8.2 43		Satisfactory
	•				
	Total Dissolved Solids	mg/L	226	500	Satisfactory
	Dissolved Oxygen	mg/L	6.1		-
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	13	50	
	Chloride	mg/L	66	Max 200	Satisfactory
	Nitrates	mg/L	1.8	Max 50	Satisfactory
Kalai - Ground Water 10	Nitrite	mg/L	<0.1		
Talai Ground Trator 10	Sulphate	mg/L	7.3	Max 250	Satisfactory
	Magnesium as Mg	mg/L	13	30	Satisfactory
	Calcium as Ca	mg/L	36	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	11.8	<200	Satisfactory
	Potassium as K	mg/L	3.2	0 – 50	Satisfactory
	Salinity	ppt	0.21		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.4		
	Colour	Hazen	3.8	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	433	Max 1000	Satisfactory
ISDH - Ground Water 01	рН	μο/ οι τι 	7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	32		
	Total Dissolved Solids	mg/L	289	500	Satisfactory
	Dissolved Oxygen	mg/L	6.4		
	Biological Oxygen Demand	mg/L		40	
	Diological Oxygen Demand	mg/L	<05	+∪	

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail Web

carelabs.analytical@gmail.com IN THE FIELD OF : www.carclabs.in

TESTING SERVICES

	Chemical Oxygen Demand	mg/L	15	50	
	Chloride	mg/L	74	Max 200	Satisfactory
	Nitrates	mg/L	1.9	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.9	Max 250	Satisfactory
	Magnesium as Mg	mg/L	18	30	Satisfactory
	Calcium as Ca	mg/L	40	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
ISDH - Ground Water 01 Cont.	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
Cont.	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	16.3	<200	Satisfactory
	Potassium as K	mg/L	4.4	0 – 50	Satisfactory
	Salinity	ppt	0.25		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.1		
	Temperature	°C	25.4		
	Colour	Hazen	4.2	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	441	Max 1000	Satisfactory
	рН		7.9	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	35		
	Total Dissolved Solids	mg/L	295	500	Satisfactory
	Dissolved Oxygen	mg/L	6.1		
ISDU Cround Mater 00	Biological Oxygen Demand	mg/L	05	40	
ISDH - Ground Water 02	Chemical Oxygen Demand	mg/L	15	50	
	Chloride	mg/L	75	Max 200	Satisfactory
	Nitrates	mg/L	2	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.9	Max 250	Satisfactory
	Magnesium as Mg	mg/L	19	30	Satisfactory
	Calcium as Ca	mg/L	43	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

Web

: www.carclabs.in

carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

	Odour		Not Agreeable	Agreeable	Unsatisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
ISDH - Ground Water 02	Total Nitrogen	mg/L	<0.1	100	Satisfactory
Cont.	Sodium as Na	mg/L	17.9	<200	Satisfactory
	Potassium as K	mg/L	4.6	0 – 50	Satisfactory
	Salinity	ppt	0.26		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.1		
	Temperature	°C	25.2		
	Colour	Hazen	4.0	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	359	Max 1000	Satisfactory
	рН		7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	32		
	Total Dissolved Solids	mg/L	240	500	Satisfactory
	Dissolved Oxygen	mg/L	6.1		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	13	50	
	Chloride	mg/L	70	Max 200	Satisfactory
	Nitrates	mg/L	1.4	Max 50	Satisfactory
ISDH - Ground Water 03	Nitrite	mg/L	<0.1		
Iobii - Giodiia Water 03	Sulphate	mg/L	7.5	Max 250	Satisfactory
	Magnesium as Mg	mg/L	14	30	Satisfactory
	Calcium as Ca	mg/L	39	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	12.8	<200	Satisfactory
	Potassium as K	mg/L	3.6	0 – 50	Satisfactory
	Salinity	ppt	0.23		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
ISDH - Ground Water 04	Turbidity	NTU	3.6		

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bani Shiva Ganga Colony, L.B. Nagar, Hyd-500 074,

Mobile E-mail

+91 89392 24215

Web

÷ carelabs.analytical@gmail.com : www.carclabs.in

IN THE FIELD OF **TESTING SERVICES**

 $^{\circ}C$ 25.2 Temperature Hazen 8.2 Colour Max. 5.0 Unsatisfactory **Electric Conductivity** 926 Max 1000 Satisfactory μs/cm рΗ 6.5-8.5 7.7 Satisfactory Alkalinity as CaCO3 mg/L 25 mg/L **Total Dissolved Solids** 621 500 Unsatisfactory Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L 40 06 Chemical Oxygen Demand 50 mg/L 25 Chloride mg/L 275 Max 200 Satisfactory mg/L Max 50 **Nitrates** 25 Satisfactory Nitrite mg/L < 0.1 ISDH - Ground Water 04 Sulphate mg/L Max 250 20.5 Satisfactory Cont. mg/L 22 Magnesium as Mg 30 Satisfactory Calcium as Ca mg/L 51 75 Satisfactory Iron as Fe mg/L Max 0.3 Satisfactory < 0.005 Ammonia mg/L Max 0.5 < 0.1 Satisfactory Odour Agreeable Agreeable Satisfactory mg/L Acidity < 0.1 mg/L Total-Phosphorous 5.0 Satisfactory < 0.1 mg/L 100 < 0.1 Total Nitrogen Satisfactory mg/L Satisfactory <200 Sodium as Na 28.5 mg/L Satisfactory Potassium as K 7.2 0 - 50ppt Salinity 0.52 mg/L Phosphate as PO4 Satisfactory < 0.1 <5 Turbidity NTU 0.2 ٥С 25.3 Temperature Hazen 3.9 Colour Max. 5.0 Satisfactory **Electric Conductivity** 381 Max 1000 Satisfactory µs/cm рΗ 6.5-8.5 Satisfactory 7.7 ISDH - Ground Water 05 Alkalinity as CaCO₃ mg/L 25 mg/L 500 **Total Dissolved Solids** 256 Satisfactory Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L 40 <05 Chemical Oxygen Demand mg/L 13 50

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

Web : www.carclabs.in

	1. 2010 Certaine Candiatory			1	
	Chloride	mg/L	71	Max 200	Satisfactory
	Nitrates	mg/L	1.6	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.5	Max 250	Satisfactory
	Magnesium as Mg	mg/L	18	30	Satisfactory
	Calcium as Ca	mg/L	40	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
SDH - Ground Water 05	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
Cont.	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	13	<200	Satisfactory
	Potassium as K	mg/L	3.7	0 – 50	Satisfactory
	Salinity	ppt	0.23		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.4		
	Temperature	°C	25.3		
	Colour	Hazen	3.8	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	295.5	Max 1000	Satisfactory
	рН		8.1	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	41		
	Total Dissolved Solids	mg/L	197	500	Satisfactory
	Dissolved Oxygen	mg/L	6.2		
	Biological Oxygen Demand	mg/L	<05	40	
SDH - Ground Water 06	Chemical Oxygen Demand	mg/L	10	50	
	Chloride	mg/L	62	Max 200	Satisfactory
	Nitrates	mg/L	1.7	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.2	Max 250	Satisfactory
	Sulphate Magnesium as Mg	mg/L mg/L	7.2 13	Max 250 30	Satisfactory Satisfactory
	·				
	Magnesium as Mg	mg/L	13	30	Satisfactory
	Magnesium as Mg Calcium as Ca	mg/L mg/L	13 33	30 75	Satisfactory Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile. E-mail

+91 89392 24215

Web : www.carclabs.in **TESTING SERVICES**

	Acidity	mg/L	<0.1		-
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
ISDH - Ground Water 06 Cont.	Sodium as Na	mg/L	11.1	<200	Satisfactory
2 2 3 3 4	Potassium as K	mg/L	3	0 – 50	Satisfactory
	Salinity	ppt	0.22		1
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	2.1		1
	Temperature	°C	25.4		
	Colour	Hazen	6.8	Max. 5.0	Unsatisfactory
	Electric Conductivity	μs/cm	714	Max 1000	Satisfactory
	рН		7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	30		
	Total Dissolved Solids	mg/L	479	500	Satisfactory
	Dissolved Oxygen	mg/L	6		
	Biological Oxygen Demand	mg/L	05	40	
	Chemical Oxygen Demand	mg/L	20	50	-
	Chloride	mg/L	86	Max 200	Satisfactory
	Nitrates	mg/L	2.9	Max 50	Satisfactory
ISDU Cround Water 07	Nitrite	mg/L	<0.1		-1
ISDH - Ground Water 07	Sulphate	mg/L	12.5	Max 250	Satisfactory
	Magnesium as Mg	mg/L	26	30	Satisfactory
	Calcium as Ca	mg/L	64	75	Satisfactory
	Iron as Fe	mg/L	0.05	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour	-	Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	21.4	<200	Satisfactory
	Potassium as K	mg/L	5.3	0 – 50	Satisfactory
	Salinity	ppt	0.39		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
ISDU Cround Water 00	Turbidity	NTU	0.3		
ISDH - Ground Water 08	Temperature	°C	25.1		

Corp. off. : # 3-11-482/2, Plot No.1, 3rd Floor. Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail Web

carelabs.analytical@gmail.com IN THE FIELD OF

: www.carclabs.in

TESTING SERVICES

	Colour Electric Conductivity	Hazen µs/cm	3.7 386	Max. 5.0 Max 1000	Satisfactory Satisfactory
	•	μs/cm	386	Max 1000	Satisfactory
				Wax 1000	Satisfactory
	pН		7.9	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	35		
	Total Dissolved Solids	mg/L	259	500	Satisfactory
	Dissolved Oxygen	mg/L	6.2		
1	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	13	50	
	Chloride	mg/L	72	Max 200	Satisfactory
	Nitrates	mg/L	1.6	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
ISDH - Ground Water 08	Sulphate	mg/L	7.6	Max 250	Satisfactory
Cont.	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	40	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
_	Total Nitrogen	mg/L	<0.1	100	Satisfactory
_	Sodium as Na	mg/L	13.2	<200	Satisfactory
	Potassium as K	mg/L	3.8	0 – 50	Satisfactory
	Salinity	ppt	0.24		
<u> </u>	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
_	Temperature	°C	25.3		
_	Colour	Hazen	3.7	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	440	Max 1000	Satisfactory
	pH		7.9	6.5-8.5	Satisfactory
ISDH - Ground Water 09	Alkalinity as CaCO₃	mg/L	36		
	Total Dissolved Solids	mg/L	294	500	Satisfactory
	Dissolved Oxygen	mg/L	6.1		
- 1	Biological Oxygen Demand	mg/L	05	40	
		mg/L	15	50	
	Chemical Oxygen Demand	ilig/∟ i	10	50	

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

Web

: www.carclabs.in

: carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

	Nitrates	mg/L	2	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.8	Max 250	Satisfactory
	Magnesium as Mg	mg/L	19	30	Satisfactory
	Calcium as Ca	mg/L	44	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
ISDH - Ground Water 09 Cont.	Odour	-	Agreeable	Agreeable	Satisfactory
oon.	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	17.9	<200	Satisfactory
	Potassium as K	mg/L	4.6	0 – 50	Satisfactory
	Salinity	ppt	0.26		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.3		
	Colour	Hazen	4.0	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	420	Max 1000	Satisfactory
	рН		8.0	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	42		
	Total Dissolved Solids	mg/L	281	500	Satisfactory
	Dissolved Oxygen	mg/L	6.4		
	Biological Oxygen Demand	mg/L	<05	40	
ISDU Cround Water 10	Chemical Oxygen Demand	mg/L	14	50	
ISDH - Ground Water 10	Chloride	mg/L	73	Max 200	Satisfactory
	Nitrates	mg/L	1.8	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.9	Max 250	Satisfactory
	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	40	75	Satisfactory
	Iron as Fe	mg/L	0.01	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour	-	Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web

: www.carelabs.in

TESTING SERVICES

	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
ISDH - Ground Water 10	Sodium as Na	mg/L	15.9	<200	Satisfactory
Cont.	Potassium as K	mg/L	4.2	0 – 50	Satisfactory
	Salinity	ppt	0.25		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.4		
	Temperature	°C	25.2		
	Colour	Hazen	3.4	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	567	Max 1000	Satisfactory
	рН		7.5	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	21		
	Total Dissolved Solids	mg/L	378	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	05	40	-
	Chemical Oxygen Demand	mg/L	19	50	
	Chloride	mg/L	81	Max 200	Satisfactory
	Nitrates	mg/L	2.5	Max 50	Satisfactory
CAN Consumed Water 04	Nitrite	mg/L	<0.1		-
GAN - Ground Water - 01	Sulphate	mg/L	10.2	Max 250	Satisfactory
	Magnesium as Mg	mg/L	21	30	Satisfactory
	Calcium as Ca	mg/L	45	75	Satisfactory
	Iron as Fe	mg/L	0.08	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		-
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	20.8	<200	Satisfactory
	Potassium as K	mg/L	5.6	0 – 50	Satisfactory
	Salinity	ppt	0.31		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
GAN - Ground Water - 02	Temperature	°C	25.1		
	Colour	Hazen	3.8	Max. 5.0	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile.

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web : www.carelabs.in **TESTING SERVICES**

	Electric Conductivity	μs/cm	414	Max 1000	Satisfactory
	рН		7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	31		
	Total Dissolved Solids	mg/L	277	500	Satisfactory
	Dissolved Oxygen	mg/L	6.4		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	14	50	
	Chloride	mg/L	73	Max 200	Satisfactory
	Nitrates	mg/L	1.8	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.8	Max 250	Satisfactory
GAN - Ground Water – 02 Cont.	Magnesium as Mg	mg/L	17	30	Satisfactory
oz cont.	Calcium as Ca	mg/L	41	75	Satisfactory
	Iron as Fe	mg/L	0.01	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	15.2	<200	Satisfactory
	Potassium as K	mg/L	4.1	0 – 50	Satisfactory
	Salinity	ppt	0.25		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory

^{**} As per Utility Regulatory Authority (Male: Republic of Maldives).

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank, Shiva Ganga Colony, L.B. Nagar, Hyd-500 074,

Mobile:

+91 89392 24215

E-mail : carelabs.analytical@gmail.com Web : www.corolabs.in

IN THE FIELD OF TESTING SERVICES

Epoch Associates Private Limited

G. Rosary West, 3rd Floor, Husnuheena Magu, Male' 20101, Republic of Maldives

Sub Contracted by NSURE Private Limited

Issue Date: 16.02.2024

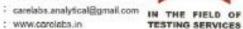
Sample Registration Date: 09.02.2024

Sample Collection Date: 07.02.2024

TEST RESULTS

SAMPLE NAME	TEST PARAMETER	UNITS	RESULTS	**ACCEPTABLE LIMITS	SATISFACTORY / UNSATISFACTORY
	Turbidity	NTU	0.2		
	Temperature	°C	25.2		
	Colour	Hazen	3.5	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	443	Max 1000	Satisfactory
	рН		7.9	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	36		
	Total Dissolved Solids	mg/L	296	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	05	40	
	Chemical Oxygen Demand	mg/L	15	50	
	Chloride	mg/L	75	Max 200	Satisfactory
GAN - Ground Water - 03	Nitrates	mg/L	2.1	Max 50	Satisfactory
GAN - Ground water - 03	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.9	Max 250	Satisfactory
	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	43	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	18	<200	Satisfactory
	Potassium as K	mg/L	4.7	0 – 50	Satisfactory

R. Sekunthala (Microbiology)



Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile: +91 89392 24215

E-mail

Web : www.carclabs.in

GAN - Ground Water - 03	Salinity	ppt	0.26		
Cont.	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.6		
	Temperature	°C	25.2		
	Colour	Hazen	3.2	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	817.5	Max 1000	Satisfactory
	рН		7.5	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	20		
	Total Dissolved Solids	mg/L	545	500	Unsatisfactory
	Dissolved Oxygen	mg/L	6.1		
	Biological Oxygen Demand	mg/L	06	40	
	Chemical Oxygen Demand	mg/L	21	50	
	Chloride	mg/L	105	Max 200	Satisfactory
	Nitrates	mg/L	2.9	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
SAN - Ground Water - 04	Sulphate	mg/L	18.6	Max 250	Satisfactory
	Magnesium as Mg	mg/L	21	30	Satisfactory
	Calcium as Ca	mg/L	58	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Not Agreeable	Agreeable	Unsatisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	22.9	<200	Satisfactory
	Potassium as K	mg/L	5.8	0 – 50	Satisfactory
	Salinity	ppt	0.48		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.1		
	Colour	Hazen	3.9	Max. 5.0	Satisfactory
GAN - Ground Water - 05	Electric Conductivity	μs/cm	483	Max 1000	Satisfactory
	рН		7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	31		
	Total Dissolved Solids	mg/L	324	500	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile: +91 89392 24215

carelabs.analytical@gmail.com IN THE FIELD OF E-mail

Web : www.carclabs.in

TESTING SERVICES

741100 4300	1 : 2018 Certified Laboratory				
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	16	50	
	Chloride	mg/L	77	Max 200	Satisfactory
	Nitrates	mg/L	16	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	8	Max 250	Satisfactory
	Magnesium as Mg	mg/L	18	30	Satisfactory
	Calcium as Ca	mg/L	48	75	Satisfactory
GAN - Ground Water - 05 Cont.	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
Joint.	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	18.5	<200	Satisfactory
	Potassium as K	mg/L	4.8	0 – 50	Satisfactory
	Salinity	ppt	0.26		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.3		
	Temperature	°C	25.1		
	Colour	Hazen	3.7	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	378	Max 1000	Satisfactory
	рН		8.0	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	41		
	Total Dissolved Solids	mg/L	254	500	Satisfactory
CAN Crownd Water 00	Dissolved Oxygen	mg/L	6.1		
GAN - Ground Water - 06	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	13	50	
	Chloride	mg/L	71	Max 200	Satisfactory
	Nitrates	mg/L	1.5	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.5	Max 250	Satisfactory
	Magnesium as Mg	mg/L	16	30	Satisfactory
	Calcium as Ca	mg/L	40	75	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile:

+91 89392 24215

E-mail Web : www.carclabs.in

: carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
GAN - Ground Water - 06	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Cont.	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	13	<200	Satisfactory
	Potassium as K	mg/L	3.7	0 – 50	Satisfactory
	Salinity	ppt	0.23		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	1.2		
	Temperature	°C	25.3		
	Colour	Hazen	5.1	Max. 5.0	Unsatisfactory
	Electric Conductivity	μs/cm	529.5	Max 1000	Satisfactory
	рН		7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	32		
	Total Dissolved Solids	mg/L	353	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	17	50	
	Chloride	mg/L	79	Max 200	Satisfactory
	Nitrates	mg/L	2.5	Max 50	Satisfactory
GAN - Ground Water - 07	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	9.9	Max 250	Satisfactory
	Magnesium as Mg	mg/L	18	30	Satisfactory
	Calcium as Ca	mg/L	43	75	Satisfactory
	Iron as Fe	mg/L	0.08	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	20	<200	Satisfactory
	Potassium as K	mg/L	5.3	0 – 50	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile:

Web

+91 89392 24215

E-mail

: www.carclabs.in

: carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

			_	
Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
Turbidity	NTU	0.2		
Temperature	°C	25.3		
Colour	Hazen	3.6	Max. 5.0	Satisfactory
Electric Conductivity	μs/cm	384	Max 1000	Satisfactory
рН		7.5	6.5-8.5	Satisfactory
Alkalinity as CaCO₃	mg/L	22		
Total Dissolved Solids	mg/L	258	500	Satisfactory
Dissolved Oxygen	mg/L	6.1		
Biological Oxygen Demand	mg/L	<05	40	
Chemical Oxygen Demand	mg/L	13	50	
Chloride	mg/L	71	Max 200	Satisfactory
Nitrates	mg/L	1.6	Max 50	Satisfactory
Nitrite	mg/L	<0.1		
Sulphate	mg/L	7.5	Max 250	Satisfactory
Magnesium as Mg	mg/L	15	30	Satisfactory
Calcium as Ca	mg/L	39	75	Satisfactory
Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
Odour		Agreeable	Agreeable	Satisfactory
Acidity	mg/L	<0.1		
Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
·	mg/L		100	Satisfactory
-	mg/L		<200	Satisfactory
	mg/L		1	Satisfactory
Salinity	ppt	0.23		
Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
Turbidity	NTU			
Temperature	°C	25.4		
Colour	Hazen	4.0	Max. 5.0	Satisfactory
Electric Conductivity	μs/cm	406	Max 1000	Satisfactory
pН		7.9	6.5-8.5	Satisfactory
Alkalinity as CaCO ₃	mg/L	36		
Total Dissolved Solids	mg/L		500	Satisfactory
	mg/L			
	Turbidity Temperature Colour Electric Conductivity pH Alkalinity as CaCO ₃ Total Dissolved Solids Dissolved Oxygen Biological Oxygen Demand Chemical Oxygen Demand Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour Acidity Total-Phosphorous Total Nitrogen Sodium as Na Potassium as K Salinity Phosphate as PO4 Turbidity Temperature Colour Electric Conductivity pH Alkalinity as CaCO ₃	Turbidity Temperature Colour Flectric Conductivity pH Flectric Condu	Turbidity NTU 0.2 Temperature °C 25.3 Colour Hazen 3.6 Electric Conductivity µs/cm 384 pH 7.5 Alkalinity as CaCO3 mg/L 22 Total Dissolved Solids mg/L 258 Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L 13 Chemical Oxygen Demand mg/L 71 Nitrates mg/L 7.5 Magnesium as Mg mg/L 7.5 Magnesium as Mg mg/L 39 Iron as Fe mg/L 40.1 Odour Agreeable Acidity mg/L 40.1 Total Nitrogen mg/L 4	Turbidity NTU 0.2 Temperature °C 25.3 Colour Hazen 3.6 Max. 5.0 Electric Conductivity μs/cm 384 Max 1000 pH 7.5 6.5-8.5 Alkalinity as CaCO ₃ mg/L 22 Total Dissolved Solids mg/L 258 500 Dissolved Oxygen mg/L 6.1 Biological Oxygen Demand mg/L 405 40 Chemical Oxygen Demand mg/L 71 Max 200 Nitrates mg/L 1.6 Max 50 Nitrite mg/L <-0.1 Sulphate mg/L 7.5 Max 250 Magnesium as Mg mg/L 15 30 Calcium as Ca mg/L <-0.005 Max 0.3 Ammonia mg/L <-0.01 Max 0.5 Odour Agreeable Agreeable Acidity mg/L <-0.1 Total Nitrogen mg/L <-0.1 100 Sodium as Na mg/L 3.7 0 - 50 Salinity ppt 0.23 Phosphate as PO4 mg/L Turbidity NTU 0.1 Temperature °C 25.4 Colour Hazen 4.0 Max 5.0 Electric Conductivity μs/cm 406 Max 1000 Total Dissolved Solids mg/L 36 Total Dissolved Solids mg/L 272 500

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

TESTING SERVICES

	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	14	50	
	Chloride	mg/L	73	Max 200	Satisfactory
	Nitrates	mg/L	1.7	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.7	Max 250	Satisfactory
	Magnesium as Mg	mg/L	16	30	Satisfactory
	Calcium as Ca	mg/L	42	75	Satisfactory
GAN - Ground Water - 09	Iron as Fe	mg/L	0.01	Max 0.3	Satisfactory
Cont.	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	14.5	<200	Satisfactory
	Potassium as K	mg/L	4	0 – 50	Satisfactory
	Salinity	ppt	0.24		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	24.9		
	Colour	Hazen	3.8	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	477	Max 1000	Satisfactory
	рН		8.0	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	42		
	Total Dissolved Solids	mg/L	318	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
GAN - Ground Water - 10	Biological Oxygen Demand	mg/L	05	40	
	Chemical Oxygen Demand	mg/L	16	50	
	Chloride	mg/L	76	Max 200	Satisfactory
	Nitrates	mg/L	2.3	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	8	Max 250	Satisfactory
	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	47	75	Satisfactory
-	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile:

+91 89392 24215

E-mail Web

: www.carclabs.in

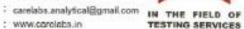
carelabs.analytical@gmail.com IN THE FIELD OF

TESTING SERVICES

		,,		1	
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
GAN - Ground Water - 10	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Cont.	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	18.5	<200	Satisfactory
	Potassium as K	mg/L	4.8	0 – 50	Satisfactory
	Salinity	ppt	0.26		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	3.4		
	Temperature	°C	25.2		
	Colour	Hazen	6.2	Max. 5.0	Unsatisfactory
	Electric Conductivity	μs/cm	1164	Max 1000	Unsatisfactory
	рН		8.4	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	48		
	Total Dissolved Solids	mg/L	780	500	Unsatisfactory
	Dissolved Oxygen	mg/L	6.2		
	Biological Oxygen Demand	mg/L	08	40	
	Chemical Oxygen Demand	mg/L	35	50	
	Chloride	mg/L	265	Max 200	Unsatisfactory
	Nitrates	mg/L	30	Max 50	Satisfactory
DHAB - Ground Water 01	Nitrite	mg/L	<0.1		
DHAB - Ground Water Or	Sulphate	mg/L	25	Max 250	Satisfactory
	Magnesium as Mg	mg/L	20	30	Satisfactory
	Calcium as Ca	mg/L	55	75	Satisfactory
	Iron as Fe	mg/L	0.15	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	35.4	<200	Satisfactory
	Potassium as K	mg/L	9.2	0 – 50	Satisfactory
	Salinity	ppt	0.66		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Turbidity Temperature Colour Electric Conductivity pH Alkalinity as CaCO ₃ Total Dissolved Solids Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour Acidity	mg/L and mg/L	0.3 25.3 3.3 339 8.2 45 591 6.2 06 28 108 3 <0.1 19.3 25 65 0.03 <0.1	Max. 5.0 Max 1000 6.5-8.5 500 40 50 Max 200 Max 50 Max 250 30 75 Max 0.3 Max 0.5	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Colour Electric Conductivity pH Alkalinity as CaCO ₃ Total Dissolved Solids Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	Hazen µs/cm mg/L mg/L mg/L and mg/L mg/L	3.3 339 8.2 45 591 6.2 06 28 108 3 <0.1 19.3 25 65 0.03	Max 1000 6.5-8.5 500 40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Electric Conductivity pH Alkalinity as CaCO ₃ Total Dissolved Solids Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	μs/cm mg/L mg/L mg/L and mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	339 8.2 45 591 6.2 06 28 108 3 <0.1 19.3 25 65 0.03	Max 1000 6.5-8.5 500 40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
pH Alkalinity as CaCO ₃ Total Dissolved Solids Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	8.2 45 591 6.2 06 28 108 3 <0.1 19.3 25 65 0.03	6.5-8.5 500 40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Alkalinity as CaCO ₃ Total Dissolved Solids Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L and mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	45 591 6.2 06 28 108 3 <0.1 19.3 25 65 0.03	500 40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Total Dissolved Solids Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	591 6.2 06 28 108 3 <0.1 19.3 25 65 0.03	40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Dissolved Oxygen Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6.2 06 28 108 3 <0.1 19.3 25 65 0.03	40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Biological Oxygen Dema Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	06 28 108 3 <0.1 19.3 25 65 0.03	40 50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Chemical Oxygen Dema Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	28 108 3 <0.1 19.3 25 65 0.03	50 Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Chloride Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 3 <0.1 19.3 25 65 0.03	Max 200 Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Nitrates Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	3 <0.1 19.3 25 65 0.03	Max 50 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
Nitrite Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L mg/L	<0.1 19.3 25 65 0.03	 Max 250 30 75 Max 0.3	Satisfactory Satisfactory Satisfactory Satisfactory
Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L mg/L	19.3 25 65 0.03	30 75 Max 0.3	Satisfactory Satisfactory Satisfactory
Sulphate Magnesium as Mg Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L mg/L	25 65 0.03	30 75 Max 0.3	Satisfactory Satisfactory Satisfactory
Calcium as Ca Iron as Fe Ammonia Odour	mg/L mg/L mg/L	65 0.03	75 Max 0.3	Satisfactory Satisfactory
Iron as Fe Ammonia Odour	mg/L	0.03	Max 0.3	Satisfactory
Ammonia Odour	mg/L			-
Odour		<0.1	Max 0.5	Satisfactory
Acidity		Agreeable	Agreeable	Satisfactory
	mg/L	<0.1		
Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
Total Nitrogen	mg/L	<0.1	100	Satisfactory
Sodium as Na	mg/L	24.5	<200	Satisfactory
Potassium as K	mg/L	5.9	0 – 50	Satisfactory
Salinity	ppt	0.45		
Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
Turbidity	NTU	0.2		
Temperature	°C	25.1		
Colour	Hazen	4.2	Max. 5.0	Satisfactory
Electric Conductivity	μs/cm	1873	Max 1000	Unsatisfactory
DHAB - Ground Water 03 pH		8.0	6.5-8.5	Satisfactory
Alkalinity as CaCO ₃	mg/L	39		
Total Dissolved Solids	s mg/L	1255	500	Unsatisfactory
Dissolved Oxygen	mg/L	6.1		
Biological Oxygen Dema	and mg/L	12	40	



Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile: +91 89392 24215

E-mail

Web : www.carclabs.in

	1 : 2018 Certified Laboratory				
	Chemical Oxygen Demand	mg/L	49	50	
	Chloride	mg/L	515	Max 200	Unsatisfactory
	Nitrates	mg/L	35	Max 50	Satisfactory
	Nitrite	mg/L	0.14		
	Sulphate	mg/L	38	Max 250	Satisfactory
	Magnesium as Mg	mg/L	25	30	Satisfactory
	Calcium as Ca	mg/L	87	75	Unsatisfactory
	Iron as Fe	mg/L	0.12	Max 0.3	Satisfactory
OHAB - Ground Water 03 Cont.	Ammonia	mg/L	0.25	Max 0.5	Satisfactory
Cont.	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	0.12	5.0	Satisfactory
	Total Nitrogen	mg/L	0.12	100	Satisfactory
	Sodium as Na	mg/L	65.2	<200	Satisfactory
	Potassium as K	mg/L	11.3	0 – 50	Satisfactory
	Salinity	ppt	1.12		
	Phosphate as PO4	mg/L	0.37	<5	Satisfactory
	Turbidity	NTU	0.8		
	Temperature	°C	25.1		
	Colour	Hazen	5.4	Max. 5.0	Unsatisfactory
	Electric Conductivity	μs/cm	521	Max 1000	Satisfactory
	pH		8.0	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	41		
	Total Dissolved Solids	mg/L	349	500	Satisfactory
	Dissolved Oxygen	mg/L	6.4		
NIAD Coorned Water 04	Biological Oxygen Demand	mg/L	06	40	
OHAB - Ground Water 04	Chemical Oxygen Demand	mg/L	17	50	
	Chloride	mg/L	79	Max 200	Satisfactory
	Nitrates	mg/L	2.5	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	8.6	Max 250	Satisfactory
	Magnesium as Mg	mg/L	21	30	Satisfactory
	Calcium as Ca	mg/L	54	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
DHAB - Ground Water 04	Total Nitrogen	mg/L	<0.1	100	Satisfactory
Cont.	Sodium as Na	mg/L	19.7	<200	Satisfactory
	Potassium as K	mg/L	5	0 – 50	Satisfactory
	Salinity	ppt	0.31		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.4		
	Temperature	°C	25.1		
	Colour	Hazen	3.5	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	359	Max 1000	Satisfactory
	рН		7.9	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	37		
	Total Dissolved Solids	mg/L	473	500	Satisfactory
	Dissolved Oxygen	mg/L	6.1		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	18	50	
	Chloride	mg/L	83	Max 200	Satisfactory
	Nitrates	mg/L	2.9	Max 50	Satisfactory
DUAD Owner 1 Make 1 05	Nitrite	mg/L	<0.1		
DHAB - Ground Water 05	Sulphate	mg/L	12	Max 250	Satisfactory
	Magnesium as Mg	mg/L	22	30	Satisfactory
	Calcium as Ca	mg/L	63	75	Satisfactory
	Iron as Fe	mg/L	0.1	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	21.4	<200	Satisfactory
	Potassium as K	mg/L	2	0 – 50	Satisfactory
	Salinity	ppt	0.36		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
DHAB - Ground Water 06	·	NTU	0.2		

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile:

+91 89392 24215

E-mail Web : www.carclabs.in

carelabs.analytical@gmail.com IN THE FIELD OF **TESTING SERVICES**

77					
	Temperature	°C	24.9		
	Colour	Hazen	3.8	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	461	Max 1000	Satisfactory
	рН		7.7	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	26		-
	Total Dissolved Solids	mg/L	308	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	15	50	-
	Chloride	mg/L	76	Max 200	Satisfactory
	Nitrates	mg/L	2.2	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
DHAB - Ground Water 06 Cont.	Sulphate	mg/L	8	Max 250	Satisfactory
oont.	Magnesium as Mg	mg/L	16	30	Satisfactory
	Calcium as Ca	mg/L	44	75	Satisfactory
	Iron as Fe	mg/L	0.02	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		-
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	18.2	<200	Satisfactory
	Potassium as K	mg/L	4.7	0 – 50	Satisfactory
	Salinity	ppt	0.26		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.3		
	Temperature	°C	25.1		
	Colour	Hazen	3.3	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	281	Max 1000	Satisfactory
DUAD On 1944	рН		8.1	6.5-8.5	Satisfactory
DHAB - Ground Water 07	Alkalinity as CaCO ₃	mg/L	42		
	Total Dissolved Solids	mg/L	188	500	Satisfactory
	Dissolved Oxygen	mg/L	6.3		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	10	50	

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile:

+91 89392 24215

E-mail

carelabs.analytical@gmail.com IN THE FIELD OF

Web : www.carclabs.in **TESTING SERVICES**

	Chlorido	ma/l	0.4	M 000	Catiofastan
	Chloride	mg/L	64	Max 200	Satisfactory
	Nitrates	mg/L	1.6	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	7.3	Max 250	Satisfactory
	Magnesium as Mg	mg/L	14	30	Satisfactory
	Calcium as Ca	mg/L	34	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
DHAB - Ground Water 07	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
Cont.	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	10.8	<200	Satisfactory
	Potassium as K	mg/L	2.7	0 – 50	Satisfactory
	Salinity	ppt	0.23		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.4		
	Temperature	°C	25.1		
	Colour	Hazen	3.2	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	882	Max 1000	Satisfactory
	рН		8.1	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	43		
	Total Dissolved Solids	mg/L	588	500	Unsatisfactory
	Dissolved Oxygen	mg/L	6.2		
	Biological Oxygen Demand	mg/L	05	40	
OHAB - Ground Water 08	Chemical Oxygen Demand	mg/L	24	50	
	Chloride	mg/L	110	Max 200	Satisfactory
	Nitrates	mg/L	3.1	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
	Sulphate	mg/L	19.3	Max 250	Satisfactory
	Magnesium as Mg	mg/L	23	30	Satisfactory
	Calcium as Ca	mg/L	62	75	Satisfactory
	Iron as Fe	mg/L	0.03	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Not Agreeable	Agreeable	Unsatisfactory

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sai Sadan Complex, Above Punjab National Bank Shiva Ganga Colony, L.B. Nagar, Hyd-500 074.

Mobile: +91 89392 24215

E-mail carelabs.analytical@gmail.com IN THE FIELD OF

Web : www.carclabs.in

TESTING SERVICES

	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
DHAB - Ground Water 08 Cont.	Sodium as Na	mg/L	24.6	<200	Satisfactory
oont.	Potassium as K	mg/L	5	0 – 50	Satisfactory
	Salinity	ppt	0.45		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
	Turbidity	NTU	0.2		
	Temperature	°C	25.1		
	Colour	Hazen	4.0	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	389	Max 1000	Satisfactory
	рН		7.8	6.5-8.5	Satisfactory
	Alkalinity as CaCO ₃	mg/L	31		
	Total Dissolved Solids	mg/L	261	500	Satisfactory
	Dissolved Oxygen	mg/L	6.2		
	Biological Oxygen Demand	mg/L	<05	40	
	Chemical Oxygen Demand	mg/L	13	50	
	Chloride	mg/L	72	Max 200	Satisfactory
	Nitrates	mg/L	1.6	Max 50	Satisfactory
DUAD 0	Nitrite	mg/L	<0.1		
DHAB - Ground Water 09	Sulphate	mg/L	7.6	Max 250	Satisfactory
	Magnesium as Mg	mg/L	17	30	Satisfactory
	Calcium as Ca	mg/L	41	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour		Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	13.2	<200	Satisfactory
	Potassium as K	mg/L	3.8	0 – 50	Satisfactory
	Salinity	ppt	0.24		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory
DUAD Cround Mater 40	Turbidity	NTU	0.2		
DHAB - Ground Water 10	Temperature	°C	25.2		

Corp. off.: # 3-11-482/2, Plot No.1, 3rd Floor, Sal Sadan Complex, Above Punjab National Bank, Shiva Ganga Colony, L.B. Nagar, Hyd-500 074,

Mobile : +91 89392 24215
E-mail : carelabs.analytical@gmail.com IN THE FIELD OF TESTING SERVICES

	Colour	Hazen	3.1	Max. 5.0	Satisfactory
	Electric Conductivity	μs/cm	386	Max 1000	Satisfactory
	рН		8.2	6.5-8.5	Satisfactory
	Alkalinity as CaCO₃	mg/L	43		
	Total Dissolved Solids	mg/L	189	500	Satisfactory
	Dissolved Oxygen	mg/L	6.1		
	Biological Oxygen Demand	mg/L	05	40	
	Chemical Oxygen Demand	mg/L	12	50	
	Chloride	mg/L	69	Max 200	Satisfactory
	Nitrates	mg/L	1.6	Max 50	Satisfactory
	Nitrite	mg/L	<0.1		
DHAB - Ground Water 10	Sulphate	mg/L	7.3	Max 250	Satisfactory
Cont.	Magnesium as Mg	mg/L	13	30	Satisfactory
	Calcium as Ca	mg/L	36	75	Satisfactory
	Iron as Fe	mg/L	<0.005	Max 0.3	Satisfactory
	Ammonia	mg/L	<0.1	Max 0.5	Satisfactory
	Odour	-	Agreeable	Agreeable	Satisfactory
	Acidity	mg/L	<0.1		
	Total-Phosphorous	mg/L	<0.1	5.0	Satisfactory
	Total Nitrogen	mg/L	<0.1	100	Satisfactory
	Sodium as Na	mg/L	10.8	<200	Satisfactory
	Potassium as K	mg/L	3	0 – 50	Satisfactory
	Salinity	ppt	0.23		
	Phosphate as PO4	mg/L	<0.1	<5	Satisfactory

^{**} As per Utility Regulatory Authority (Male: Republic of Maldives).

Male' Water & Sewerage Company Pvt Ltd

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

LB-TEST-090

WATER QUALITY TEST REPORT Report No: 500199468

Customer Information: Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor Husnuheenaa Magu

k MALE'

Report date: 07/02/2024
Test Requisition Form No: 900199812
Sample(s) Recieved Date: 06/02/2024
Date of Analysis: 06/02/2024 - 07/02/2024

Sample Description ~	Gan_01	Gan_02		
Sample Type ~	Ground Water	Ground Water		
Sample No	83246661	83246662		
Sampled Date ~	05/02/2024 03:55 PM	05/02/2024 03:55 PM	TEST METHOD	UNIT
Physical Appearance	Clear with particles	Clear with particles		
PARAMETER	ANALYSIS	S RESULT		
Total Coliforms	12 (06/02/2024 03:00 PM)	326 (06/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	MPN/100ml
Faecal Coliforms	12 (06/02/2024 03:00 PM)	124 (06/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	MPN/100ml

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha
Laboratory Executive

Approved by

18 th

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

*Parameters accredited by EIAC under ISO/IEC 17025:2017

Page 1 of 1 MWSC-A5-F-92 Rev 00

Male' Water & Sewerage Company Pvt Ltd

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199503

Customer Information:Epoch Associates Pvt Ltd

G.Rosary West, 3rd Floor Husnuheenaa Magu

k MALE'

Report date: 12/02/2024
Test Requisition Form No: 900199829
Sample(s) Recieved Date: 08/02/2024
Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	lsd_01	lsd_02	Isd_03
Sample Type ~	Ground Water	Ground Water	Ground Water
Sample No	83246733	83246734	83246735
Sampled Date ~	06/02/2024 09:50 AM	06/02/2024 10:05 AM	06/02/2024 10:18 AM
Physical Appearance	Clear with particles	Clear with particles	Clear with particles
PARAMETER		ANALYSIS RESULT	
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)
Faecal Coliforms	138 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha Laboratory Executive Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 1 of 3 MWSC-A5-F-92 Rev 00

Male' Water & Sewerage Company Pvt Ltd Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

Report date: 12/02/2024
Test Requisition Form No: 900199829

Sample(s) Recieved Date: **08/02/2024** Date of Analysis: **08/02/2024 - 09/02/2024**

		_	-		
Sample Description ~	Isd_04	lsd_05	lsd_06		
Sample Type ~	Ground Water	Ground Water	Ground Water		
Sample No	83246736	83246737	83246738		
Sampled Date ~	06/02/2024 10:40 AM	06/02/2024 11:00 AM	06/02/2024 11:15 AM	TEST METHOD	
Physical Appearance	Clear with particles	Clear with particles	Clear with particles		
PARAMETER		ANALYSIS RESULT			
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	
Faecal Coliforms	866 (08/02/2024 03:00 PM)	921 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	

Keys: MPN/100ml : Most Probable Number

Customer Information:

Epoch Associates Pvt Ltd

G.Rosary West, 3rd Floor

Husnuheenaa Magu

k MALE'

Checked by

Aminath Shahidha Laboratory Executive Approved by

SF

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 2 of 3 MWSC-A5-F-92 Rev 00

Male' Water & Sewerage Company Pvt Ltd Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

Test Requisition Form No: 900199829

Sample(s) Recieved Date: 08/02/2024

Date of Analysis: 08/02/2024 - 09/02/2024

Report date: 12/02/2024

WATER QUALITY TEST REPORT

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor Husnuheenaa Magu Report No: 500199503

k MALE'

ample Description ~	lsd_07
mple Type ~	Ground Water
mple No	83246739
Sampled Date ~	06/02/2024 11:25 AM
Physical Appearance	Clear with particles
PARAMETER	ANALYSIS RESULT
Total Coliforms	>2420 (08/02/2024 03:00 PM)
Faecal Coliforms	>2420 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha Laboratory Executive Approved by

8~~

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 3 of 3

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199504

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor

Husnuheenaa Magu k MALE' Report date: 12/02/2024

Test Requisition Form No: 900199830

Sample(s) Recieved Date: 08/02/2024

Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	Kal_05	Kal_06	Kal_07
Sample Type ~	Ground Water	Ground Water	Ground Water
Sample No	83246740	83246741	83246742
Sampled Date ~	06/02/2024 02:30 PM	06/02/2024 02:45 PM	06/02/2024 03:03 PM
Physical Appearance	Clear with particles	Clear with particles	Clear with particles
PARAMETER		ANALYSIS RESULT	
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)
Faecal Coliforms	91 (08/02/2024 03:00 PM)	437 (08/02/2024 03:00 PM)	183 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha Laboratory Executive Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 1 of 2

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

Report date: 12/02/2024

Customer Information:

ciates Pvt I td Epoch Ass G.Rosary

Husnuhee k MALE'

Associates Pvt Ltd ary West, 3rd Floor heenaa Magu E'		Test Requisition Form No: 900199830 Sample(s) Recieved Date: 08/02/2024 Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	Kal_08	Kal_09	Kal_10
Sample Type ~	Ground Water	Ground Water	Ground Water
Sample No	83246743	83246744	83246745
Sampled Date ~	06/02/2024 03:19 PM	06/02/2024 03:35 PM	06/02/2024 03:55 PM
Physical Appearance	Clear with particles	Clear with particles	Clear with particles
PARAMETER		ANALYSIS RESULT	
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)
Faecal Coliforms	>2420 (08/02/2024 03:00 PM)	94 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha **Laboratory Executive** Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

MWSC-A5-F-92 Rev 00 Page 2 of 2

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

MWSC

WATER QUALITY TEST REPORT Report No: 500199513

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor

Husnuheenaa Magu k MALE' Report date: 12/02/2024

Test Requisition Form No: 900199832

Sample(s) Recieved Date: 08/02/2024

Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	Kal_01	Kal_02	Kal_03
Sample Type ~	Ground Water	Ground Water	Ground Water
Sample No	83246749	83246750	83246751
Sampled Date ~	06/02/2024 01:40 PM	06/02/2024 01:50 PM	06/02/2024 02:05 PM
Physical Appearance	Clear with particles	Clear with particles	Clear with particles
PARAMETER		ANALYSIS RESULT	
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)
Faecal Coliforms	1300 (08/02/2024 03:00 PM)	436 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha
Laboratory Executive

Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 1 of 2

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

Report date: 12/02/2024

MPN/100ml

Test Requisition Form No: 900199832 Sample(s) Recieved Date: 08/02/2024

Date of Analysis: 08/02/2024 - 09/02/2024

WATER QUALITY TEST REPORT Report No: 500199513

Customer Information: Epoch Associates Pvt Ltd

G.Rosary West, 3rd Floor

Husnuheenaa Magu

Faecal Coliforms

k MALE'	
Sample Description ~	Kal_04
Sample Type ~	Ground Water
Sample No	83246752
Sampled Date ~	06/02/2024 02:20 PM
Physical Appearance	Clear with particles
PARAMETER	ANALYSIS RESULT
Total Coliforms	>2420 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha Laboratory Executive Approved by

Colilert®-18/Quanti-Tray®2000

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

77 (08/02/2024 03:00 PM)

MWSC-A5-F-92 Rev 00 Page 2 of 2

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199517

Customer Information: Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor

Husnuheenaa Magu

k MALE'

Report date: 12/02/2024
Test Requisition Form No: 900199838
Sample(s) Recieved Date: 08/02/2024
Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	Gan_03	Gan_06	
Sample Type ~	Ground Water	Ground Water	
Sample No	83246762	83246765	
Sampled Date ~	07/02/2024 07:15 AM	07/02/2024 08:25 AM	TEST METHOD
Physical Appearance	Pale yellow with particles	Clear with particles	
PARAMETER	ANALYSI	S RESULT	
Total Coliforms	2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000

Keys: MPN/100ml : Most Probable Number

Checked by

Nashath Ali Laboratory Executive Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 1 of 1 MWSC-A5-F-92 Rev 00

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199518

Customer Information: Epoch Associates Pvt Ltd

G.Rosary West, 3rd Floor Husnuheenaa Magu

k MALE'

Report date: 12/02/2024
Test Requisition Form No: 900199838
Sample(s) Recieved Date: 08/02/2024
Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	Gan_04	Gan_05	Gan_07
Sample Type ~	Ground Water	Ground Water	Ground Water
Sample No	83246763	83246764	83246766
Sampled Date ~	07/02/2024 08:00 AM	07/02/2024 08:10 AM	07/02/2024 10:15 AM
Physical Appearance	Pale yellow with particles	Pale yellow with particles	Pale yellow with particles
PARAMETER		ANALYSIS RESULT	
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)
Faecal Coliforms	>2420 (08/02/2024 03:00 PM)	378 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)

Keys: MPN/100ml : Most Probable Number

Checked by

Nashath Ali

Laboratory Executive

Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 1 of 2

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199518

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor Husnuheenaa Magu k MALE' Report date: 12/02/2024

Test Requisition Form No: 900199838

Sample(s) Recieved Date: 08/02/2024

Date of Analysis: **08/02/2024 - 09/02/2024**

					\neg
Sample Description ~	Gan_08	Gan_09	Gan_10		
Sample Type ~	Ground Water	Ground Water	Ground Water		
Sample No	83246767	83246768	83246769		
Sampled Date ~	07/02/2024 10:30 AM	07/02/2024 11:59 AM	07/02/2024 12:00 PM	TEST METHOD	
Physical Appearance	Pale yellow with particles	Pale yellow with particles	Pale yellow with particles		
PARAMETER		ANALYSIS RESULT			
Total Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	
Faecal Coliforms	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	T

Keys: MPN/100ml : Most Probable Number

Checked by

Nashath Ali Laboratory Executive Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 2 of 2

Water Quality Assurance Laboratory

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199497

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor

Husnuheenaa Magu k MALE' Report date: 12/02/2024
Test Requisition Form No: 900199839
Sample(s) Recieved Date: 08/02/2024
Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	DBD_01	DBD_02	DBD_03	
Sample Type ~	Ground Water	Ground Water	Ground Water	
Sample No	83246770	83246771	83246772	
Sampled Date ~	07/02/2024 02:40 PM	07/02/2024 02:50 PM	07/02/2024 02:55 PM	TEST METHOD
Physical Appearance	Pale yellow with particles	Pale yellow with particles	Pale yellow with particles	
PARAMETER		ANALYSIS RESULT		
Total Coliforms	1553 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000
Faecal Coliforms	178 (08/02/2024 03:00 PM)	1553 (08/02/2024 03:00 PM)	96 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha Laboratory Executive Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 1 of 4 MWSC-A5-F-92 Rev 00

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor Husnuheenaa Magu

k MALE'

Report No: 500199497

Test Requisition Form No: 900199839 Sample(s) Recieved Date: 08/02/2024 Date of Analysis: 08/02/2024 - 09/02/2024

Report date: 12/02/2024

sample Description ~	DBD_04	DBD_05	DBD_06	
Sample Type ~	Ground Water	Ground Water	Ground Water	
Sample No	83246773	83246774	83246775	
Sampled Date ~	07/02/2024 03:00 PM	07/02/2024 03:05 PM	07/02/2024 03:10 PM	TEST METHOD
Physical Appearance	Clear with particles	Clear with particles	Pale yellow with particles	
PARAMETER		ANALYSIS RESULT		
Total Coliforms	>2420 (08/02/2024 03:00 PM)	238 (08/02/2024 03:00 PM)	300 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000
Faecal Coliforms	1553 (08/02/2024 03:00 PM)	10 (08/02/2024 03:00 PM)	105 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha **Laboratory Executive** Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 2 of 4 MWSC-A5-F-92 Rev 00

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

Report date: 12/02/2024

WATER QUALITY TEST REPORT

Customer Information:

Epoch Associates Pvt Ltd G.Rosary West, 3rd Floor Husnuheenaa Magu k MALE' Report No: 500199497

Test Requisition Form No: 900199839 Sample(s) Recieved Date: 08/02/2024 Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	DBD_07	DBD_08	DBD_09		
Sample Type ~	Ground Water	Ground Water	Ground Water		
Sample No	83246776	83246777	83246778		
Sampled Date ~	07/02/2024 03:30 PM	07/02/2024 03:35 PM	07/02/2024 03:40 PM	TEST METHOD	(
Physical Appearance	Clear with particles	Pale yellow with particles	Pale yellow with particles		
PARAMETER		ANALYSIS RESULT			
Total Coliforms	261 (08/02/2024 03:00 PM)	1986 (08/02/2024 03:00 PM)	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	MPI
Faecal Coliforms	78 (08/02/2024 03:00 PM)	111 (08/02/2024 03:00 PM)	548 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	MPI

Keys: MPN/100ml : Most Probable Number

Checked by

Aminath Shahidha Laboratory Executive Approved by

8 mm

Nihaz A. Zahir Assistant Quality Manager

Notes:

Sampling Authority: Sampling was not done by MWSC Laboratory.

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information provided by the customer. This information may affect the validity of the test results.

Page 3 of 4

Quality Assurance Building, 1st Floor, Male' Hingun, Vilimale', Male' City, Maldives

Tel: +9603323209, Fax: +9603324306, Email: wqa@mwsc.com.mv

WATER QUALITY TEST REPORT Report No: 500199497

Customer Information: Epoch Associates Pvt Ltd

G.Rosary West, 3rd Floor Husnuheenaa Magu

k MALE'

Report date: 12/02/2024 Test Requisition Form No: 900199839 Sample(s) Recieved Date: 08/02/2024

Date of Analysis: 08/02/2024 - 09/02/2024

Sample Description ~	DBD_10		
Sample Type ~	Ground Water		
Sample No	83246779		
Sampled Date ~	07/02/2024 03:50 PM	TEST METHOD	
Physical Appearance	Pale yellow with particles		
PARAMETER	ANALYSIS RESULT		
Total Coliforms	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	
Faecal Coliforms	>2420 (08/02/2024 03:00 PM)	Colilert®-18/Quanti-Tray®2000	T

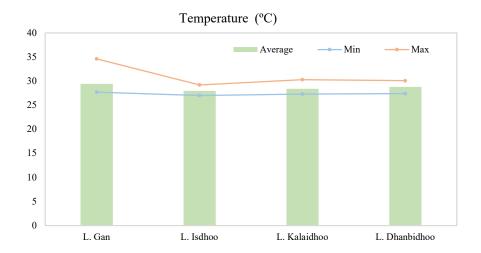
Keys: MPN/100ml : Most Probable Number

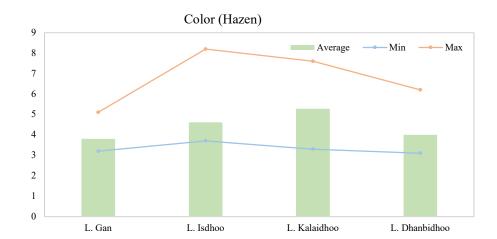
Checked by

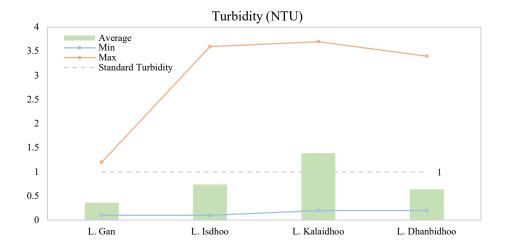
Aminath Shahidha **Laboratory Executive** Approved by

Nihaz A. Zahir Assistant Quality Manager

Notes:

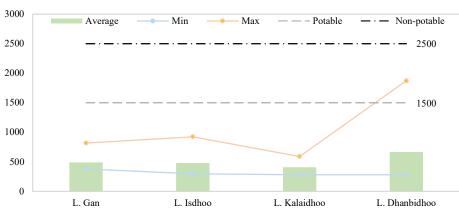

Sampling Authority: Sampling was not done by MWSC Laboratory.

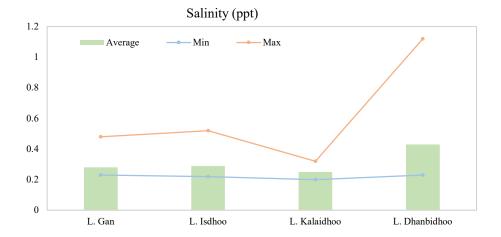

This report shall not be reproduced except in full, without written approval of MWSC.

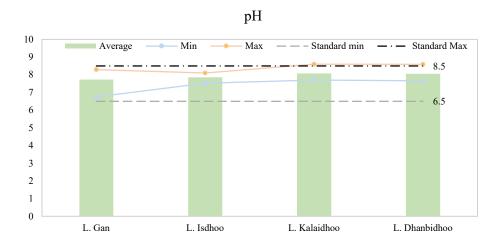

This test report is ONLY FOR THE SAMPLES TESTED.

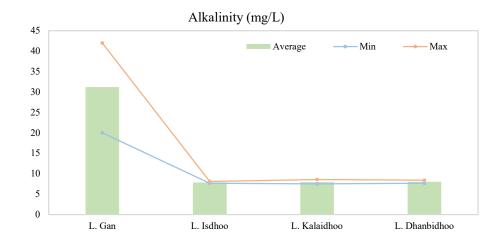
~ Information provided by the customer. This information may affect the validity of the test results.

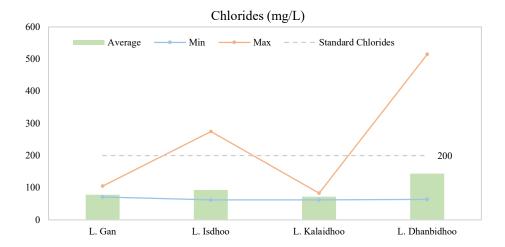
MWSC-A5-F-92 Rev 00 Page 4 of 4

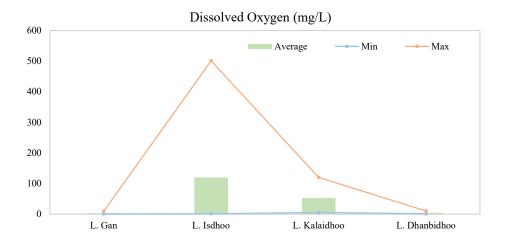


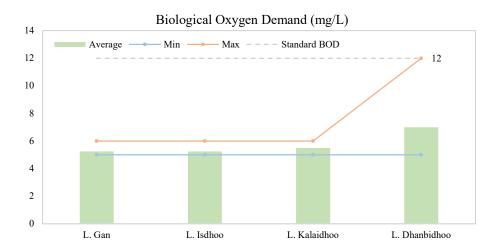


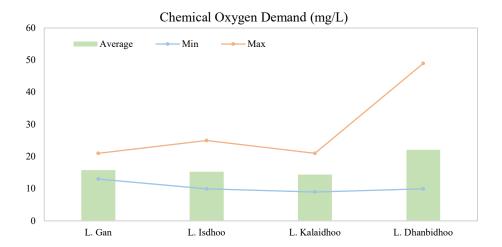


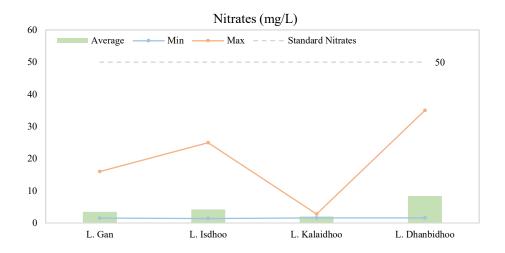


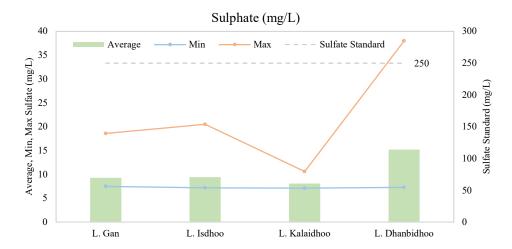


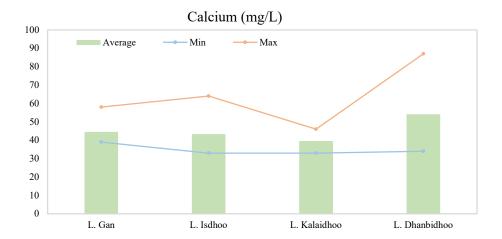


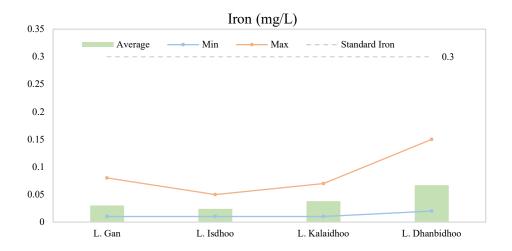


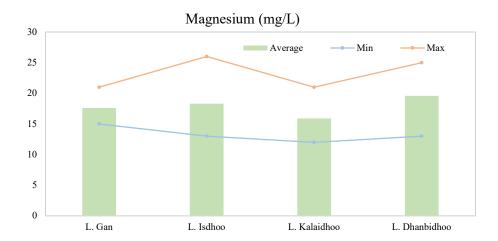


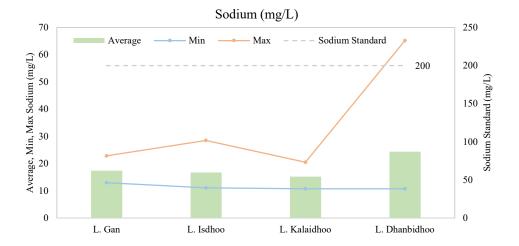


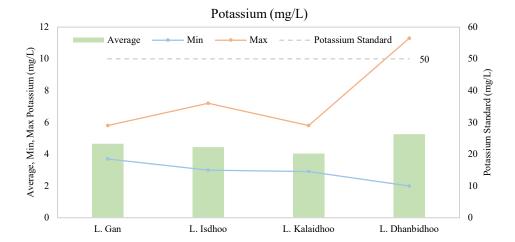












L. Gan

				Total						Biological	Chemical								
				Dissolved	Electric				Dissolved	Oxygen	Oxygen					Calcium		Sodium	
	Temperatur	Color	Turbidity	Solids	Conductivity	Salinity		Alkalinity	Oxygen	Demand	Demand	Chlorides	Nitrates	Sulphate	Magnesium	as Ca	Iron	as Na	Potassium as
Variables	e (ºC)	(Hazen)	(NTU)	(mg/L)	(µs/cm)	(ppt)	pН	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	as Mg (mg/L)	(mg/L)	(mg/L)	(mg/L)	K (mg/L)
Temperature (ºC)	1.00																		
Color (Hazen)	-0.06	1.00)																
Turbidity (NTU)	-0.36	0.62	1.00		_														
Total Dissolved Solids (mg/L)	-0.30	-0.24	0.47	1.00		_													
Electric Conductivity (µs/cm)	-0.30	-0.24	0.48	1.00	1.00)	_												
Salinity (ppt)	-0.22	-0.39	0.35	0.98	0.98	3 1.00		_											
pH	0.07	0.55	-0.01	-0.45	-0.45	-0.44	1.00)											
Alkalinity (mg/L)	0.24	0.33	-0.22	-0.57	-0.56	-0.58	0.59	1.00)	_									
Dissolved Oxygen (mg/L)	0.30	0.26	-0.28	-0.39	-0.39	-0.41	0.37	7 0.46	1.0	0									
Biological Oxygen Demand (mg/L)	-0.58	-0.73	0.87	0.95	0.95	0.97			-0.7	1.0	0	_							
Chemical Oxygen Demand (mg/L)	-0.29	-0.17	0.50	0.95	0.95	0.88	-0.59	-0.54	1 -0.2	9 0.7	9 1.0	0	_						
Chlorides (mg/L)	-0.27	-0.31	0.41	0.99	0.99	0.99	-0.39	-0.55	-0.4	0.9	8 0.8	9 1.00	כ	_					
Nitrates (mg/L)	-0.32	0.07													_				
Sulphate (mg/L)	-0.26	-0.29	0.45	0.97	0.97		-0.36	-0.58	-0.4			5 0.99	-0.0	1.00)	_			
Magnesium as Mg (mg/L)	-0.16	-0.25	0.41	0.87	0.87	0.81	-0.75	-0.56	-0.2	4 0.5	8 0.9	5 0.80	0.16	0.76	1.00		_		
Calcium as Ca (mg/L)	-0.27	-0.33	0.22	0.92	0.92	0.91	-0.32	-0.36	-0.2	9 0.9	7 0.8	6 0.93	0.30	0.87	0.75	1.00	0		
Iron (mg/L)	-0.38	0.40	0.72	0.21	0.21			-0.39	-0.1	1 -0.3	3 0.4			0.10	0.50	-0.12	2 1.0	0	_
Sodium as Na (mg/L)	-0.32	-0.04	0.53	0.87	0.87	0.77	-0.54	-0.39	-0.3	2 0.8	4 0.9	6 0.80	0.23	1 0.73	0.90	0.8:	1 0.5	1 1.0	ס
Potassium as K (mg/L)	-0.33	-0.02	0.57	0.86	0.86	0.75	-0.58	-0.43	3 -0.2	9 0.6	9 0.9	6 0.78	0.17	7 0.72	0.92	0.70	6 0.6	2 0.9	9 1.00
												_							
	negative c	orrelation	-1.00	-0.75	-0.50	-0.25	0.00	0.25	0.50	0.75	1.00	positive co	orrelation						

L. Isdhoo				Total						Biological	Chemical								
				Dissolved	Electric				Dissolved	Oxygen	Oxygen					Calcium		Sodium	
	Temperatur	Color	Turbidity	Solids	Conductivity	Salinity		Alkalinity	Oxygen	Demand	Demand	Chlorides	Nitrates	Sulphate	Magnesium	as Ca	Iron	as Na	Potassium as
Variables	e (ºC)	(Hazen)	(NTU)	(mg/L)	(µs/cm)	(ppt)	рН	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	as Mg (mg/L)	(mg/L)	(mg/L)	(mg/L)	K (mg/L)
Temperature (ºC)	1.00																		
Color (Hazen)	-0.50	1.00)	_															
Turbidity (NTU)	-0.47	0.98	1.00		_														
Total Dissolved Solids (mg/L)	-0.43	0.97	0.96	1.00															
Electric Conductivity (µs/cm)	-0.43	0.97	0.96	1.00	1.00														
Salinity (ppt)	-0.47	0.98	0.98	0.99	0.99	1.00													
pH	0.08	-0.47	-0.43	-0.54	-0.54	-0.49	1.00												
Alkalinity (mg/L)	0.53	-0.56	-0.54	-0.58	-0.57	-0.55	0.63	1.00)										
Dissolved Oxygen (mg/L)	0.34	0.31	0.25	0.30	0.30	0.25	0.07	0.21	1.00)									
Biological Oxygen Demand (mg/L)	-0.91	0.77	0.84	0.84	0.84	0.87	-0.63	-0.86	-0.3	1.0	0								
Chemical Oxygen Demand (mg/L)	-0.43	0.94	0.91	0.99	0.99	0.97	-0.60	-0.59	0.2	0.8	7 1.0	00							
Chlorides (mg/L)	-0.49	0.84	0.89	0.87	0.87	0.90	-0.41	-0.53	-0.08	1.0	0.8	1.00)						
Nitrates (mg/L)	-0.49	0.83	0.88	0.85	0.85	0.89	-0.39	-0.51	-0.10	1.0	0.8	3 1.00	1.00)					
Sulphate (mg/L)	-0.49	0.96	0.98	0.96	0.96	0.99	-0.47	-0.56	0.1	0.9	3 0.9	0.95	0.95	1.00)				
Magnesium as Mg (mg/L)	-0.19	0.74	0.67	0.80	0.80	0.74	-0.52	-0.51	0.54	0.1	0.8	0.43	0.40	0.63	1.0	0			
Calcium as Ca (mg/L)	-0.31	0.78	0.70	0.79	0.79	0.74	-0.44	-0.47	0.63	0.0	3 0.7	0.39	0.36	0.63	0.9	5 1.0	0		
Iron (mg/L)	-0.51	0.94	0.95	0.97	0.97	0.97	-0.33	-0.79	0.40	#DIV/0!	0.9	9 0.99	0.99	0.96	0.9	9 0.9	7 1.0	0	
Sodium as Na (mg/L)	-0.40	0.89	0.87	0.96	0.96	0.95	-0.53	-0.48	0.2	0.9	4 0.9	0.8!	0.83	0.91	0.79	9 0.7	4 0.9	5 1.0	0
Potassium as K (mg/L)	-0.40	0.89	0.88	0.96	0.97	0.95	-0.57	-0.53	0.20	0.9	6 0.9	0.88	0.86	0.93	0.7	6 0.7	0.9	8 0.9	9 1.00
															·				·
	negative c	orrelation	-1.00	-0.75	-0.50	-0.25	0.00	0.25	0.50	0.75	1.00	positive c	orrelation						

L.	Kal	laid	hoc

				Total						Biological	Chemical								
				Dissolved	Electric				Dissolved	Oxygen	Oxygen					Calcium		Sodium	
	Temperatur (Color	Turbidity	Solids	Conductivity	Salinity		Alkalinity	Oxygen	Demand	Demand	Chlorides	Nitrates	Sulphate	Magnesium	as Ca	Iron	as Na	Potassium as
Variables	e (ºC)	(Hazen)	(NTU)	(mg/L)	(µs/cm)	(ppt)	рН	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	as Mg (mg/L)) (mg/L)	(mg/L)	(mg/L)	K (mg/L)
Temperature (°C)	1.00	1.00																	
Color (Hazen)	0.22																		
Turbidity (NTU)	0.10	0.94																	
Total Dissolved Solids (mg/L)	-0.36	-0.34																	
Electric Conductivity (µs/cm)	-0.35	-0.34	-0.14	1.00	1.0	כ	_												
Salinity (ppt)	0.03	-0.42	-0.20	0.85	0.8	5 1.0	ס												
pH	0.29	0.87	0.75	-0.53	-0.5	3 -0.5	2 1.0	00											
Alkalinity (mg/L)	0.01	0.14	-0.12	-0.49	-0.4	-0.6	4 0.4	46 1.00	כ	_									
Dissolved Oxygen (mg/L)	0.67	0.11	0.11	-0.03	-0.0	0.2	0.3	32 0.00	1.0	0	_								
Biological Oxygen Demand (mg/L)	-1.00	-1.00	-1.00	1.00	1.0	1.0	-1.0	1.00	-1.0	1.0	0								
Chemical Oxygen Demand (mg/L)	-0.20	-0.42	-0.22	0.95	0.9	0.9	1 -0.0	52 -0.5	7 -0.0	5 1.0	0 1.0	00							
Chlorides (mg/L)	-0.28	-0.52	-0.30	0.95	0.9	0.9	-0.0	58 -0.62	0.0	1.0	0 0.9	96 1.00							
Nitrates (mg/L)	-0.39	-0.24	-0.02	0.96	0.9	0.8	-0.4	41 -0.44	4 -0.1	2 1.0	0 0.9	93 0.89	1.00	ס					
Sulphate (mg/L)	-0.29	-0.23	-0.01	0.94	0.9	0.8	-0.3	39 -0.42	2 0.0	0 1.0	0 0.9	92 0.86	0.97	7 1.00	0				
Magnesium as Mg (mg/L)	-0.15	-0.38	-0.12	0.90	0.9	0.9	-0.6	50 -0.70	0.1	0 1.0	0 0.9	94 0.94	0.85	0.88	1.0	0			
Calcium as Ca (mg/L)	-0.01	-0.27	-0.04	0.86	0.8	0.9	1 -0.!	52 -0.76	0.2	0 -1.0	0.9	90 0.90	0.77	7 0.80	0.9	6 1.0	0		
Iron (mg/L)	0.09	0.48	0.65	0.97	0.9	7 0.9	0.3	-0.69	0.2	0 -	0.9	93 0.83	0.92	0.95	0.9	0.8	9 1.0	0	
Sodium as Na (mg/L)	-0.31	-0.44	-0.25	0.97	0.9	7 0.8	7 -0.!	54 -0.45	0.1	0 1.0	0 0.9	91 0.9	0.90	0.87	7 0.8	5 0.8	2 0.9	4 1.0	O
Potassium as K (mg/L)	-0.42	-0.39	-0.19	0.99	0.9	0.8	-0.!	54 -0.45	-0.0	4 1.0	0 0.9	93 0.95	0.95	5 0.91	1 0.8	7 0.8	1 0.9	2 0.9	8 1.00
	negative co	orrelation	-1.00	-0.75	-0.50	-0.25	0.00	0.25	0.50	0.75	1.00	positive c	orrelation						

L. Dhanbi	ar	100
-----------	----	-----

				Total						Biological	Chemical								
				Dissolved	Electric				Dissolved	Oxygen	Oxygen					Calcium		Sodium	
	Temperatur	Color	Turbidity	Solids	Conductivity	Salinity		Alkalinity	Oxygen	Demand	Demand	Chlorides	Nitrates	Sulphate	Magnesium	as Ca	Iron	as Na	Potassium as
Variables	e (ºC)	(Hazen)	(NTU)	(mg/L)	(μs/cm)	(ppt)	pН	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	as Mg (mg/L)	(mg/L)	(mg/L)	(mg/L)	K (mg/L)
Temperature (ºC)	1.00																		
Color (Hazen)	-0.20	1.00		_															
Turbidity (NTU)	0.09	0.82	1.00																
Total Dissolved Solids (mg/L)	-0.44	0.32	0.27	1.00		_													
Electric Conductivity (μs/cm)	-0.22	0.40	0.31	0.92	1.00														
Salinity (ppt)	-0.40	0.32	0.26	0.99	0.95	1.00													
pH	0.39	0.38	0.71	0.02	-0.04	-0.02	1.00)											
Alkalinity (mg/L)	0.39	0.21	0.49	0.27	0.21	0.27	0.81	1.00)										
Dissolved Oxygen (mg/L)	0.67	0.07	0.41	-0.06	0.07	-0.09	0.65	0.49	1.0	0									
Biological Oxygen Demand (mg/L)	-0.68	0.34	0.12	0.92	0.90	0.96	-0.47	-0.36	-0.5	9 1.0	0								
Chemical Oxygen Demand (mg/L)	-0.43	0.37	0.34	0.99	0.91	0.98	0.11	0.34	-0.0	2 0.9	2 1.0	00							
Chlorides (mg/L)	-0.38	0.35	0.25	0.94	0.96	0.98	-0.09	0.19	-0.1	4 0.9	8 0.9	1.00							
Nitrates (mg/L)	-0.30	0.57	0.55	0.88	0.92	0.92	0.13	0.30	0.0	0.9	1 0.8	39 0.94	1.00	0					
Sulphate (mg/L)	-0.34	0.28	0.30	0.99	0.92	0.98	0.11	0.36	0.0	3 0.8	8 0.9	99 0.93	0.88	8 1.0	0				
Magnesium as Mg (mg/L)	-0.51	0.17	0.08	0.76	0.51	0.66	0.10	0.28	-0.0	7 0.4	5 0.7	74 0.51	0.43	1 0.7	2 1.00	0			
Calcium as Ca (mg/L)	-0.55	0.15	0.04	0.91	0.73	0.85	-0.11	0.20	-0.1	6 0.7	8.0	37 0.75	0.62	2 0.8	6 0.93	2 1.0	0		
Iron (mg/L)	-0.19	0.47	0.61	0.68	0.63	0.67	0.20	0.35	0.0	7 0.7	4 0.6	66 0.68	0.83	3 0.6	5 0.1	7 0.4	3 1.0	0	
Sodium as Na (mg/L)	-0.46	0.33	0.21	0.98	0.94	0.99	-0.11	0.18	-0.1	6 0.9	7 0.9	97 0.97	0.89	9 0.9	6 0.6	7 0.8	8 0.6	4 1.0	5
Potassium as K (mg/L)	-0.37	0.55	0.44	0.90	0.91	0.91	0.15	0.27	7 0.0	0.9	4 0.9	94 0.91	0.92	2 0.9	0.5	0.6	9 0.5	5 0.9	1.00
	negative o	orrelation	-1.00	-0.75	-0.50	-0.25	0.00	0.25	0.50	0.75	1.00	positive co	orrelation						

Annex 6 – Framework for groundwater quality monitoring for agrochemical contamination

Prior to conducting fieldwork for water sampling, clear objectives should be set, and scope defined with study areas defined and confirmed. In the inception phase, stakeholder consultation and literature review should be carried out.

The recommended parameters to test for agrochemical contamination, and their sampling and storage requirements are given in Table 1: Recommended parameters to test for agrochemical contamination.

Parameter	Container*	Minimum Sample Size (mL)**	Preservation	Maximum storage recommended**	US EPA maximum allowed storage
рН	P, G	50	Analyze	0.25 h	0.25 h
			immediately,		
			determine on site		
Phosphate	G	100	Cool to ≤6°C,	48 h	48 h
Nitrate	P, G	100	Cool to ≤6°C	48 h	48 h
Sulphate	P, G	100	Cool to ≤6°C	28 d	28 d
Pesticides	G	1000	Cool to ≤6°C	7 d	7 d
Potassium	P, G	50	-	14 d	14 d
Ammonia	P, G	500	Cool to ≤6°C	7 d	28 d
Electrical	P, G	100	Cool to ≤6°C	24 h	24 h
Conductivity					
Faecal	S	100	Cool to ≤10°C, do	24 h	24 h
Coliform			not allow samples		
			to freeze		
Total Coliform	S	100	Cool to ≤10°C, do	24 h	24 h
			not allow samples		
			to freeze		
E. coli	S	100	Cool to ≤10°C, do	24 h	24 h
			not allow samples		
			to freeze		

^{*} P = Plastic, G = Glass, S = Sterile

^{**} Sampling container, minimum sampling size and storage recommendations can differ for different laboratories based on testing method, as one parameter can have multiple methods of analyzing in the laboratory. To confirm, consult the laboratory where samples are sent to. Information sheets are available from local MWSC and MFDA laboratories.

. Description of the parameters are given in Table 2.

Table 1: Recommended parameters to test for agrochemical contamination.

Parameter	Container*	Minimum	Preservation	Maximum storage	US EPA
		Sample Size		recommended**	maximum
		(mL)**			allowed storage
рН	P, G	50	Analyze	0.25 h	0.25 h
			immediately,		
			determine on site		
Phosphate	G	100	Cool to ≤6°C,	48 h	48 h
Nitrate	P, G	100	Cool to ≤6°C	48 h	48 h
Sulphate	P, G	100	Cool to ≤6°C	28 d	28 d
Pesticides	G	1000	Cool to ≤6°C	7 d	7 d
Potassium	P, G	50	-	14 d	14 d
Ammonia	P, G	500	Cool to ≤6°C	7 d	28 d
Electrical	P, G	100	Cool to ≤6°C	24 h	24 h
Conductivity					
Faecal	S	100	Cool to ≤10°C, do	24 h	24 h
Coliform			not allow samples		
			to freeze		
Total Coliform	S	100	Cool to ≤10°C, do	24 h	24 h
			not allow samples		
			to freeze		
E. coli	S	100	Cool to ≤10°C, do	24 h	24 h
			not allow samples		
			to freeze		

^{*} P = Plastic, G = Glass, S = Sterile

^{**} Sampling container, minimum sampling size and storage recommendations can differ for different laboratories based on testing method, as one parameter can have multiple methods of analyzing in the laboratory. To confirm, consult the laboratory where samples are sent to. Information sheets are available from local MWSC and MFDA laboratories.

Table 2: Description of	recommended parameters
Tuble 2. Describilion of	reconninenaea parameters

	Table 2: Description of recommended parameters
Parameter	Description
Electrical	Electrical conductivity (EC) refers to the measure of a solution's ability to conduct an electrical
Conductivity	current. It's a critical parameter used to assess the salinity or total dissolved salt concentration in soil
	or irrigation water. EC is measured in units of millisiemens per centimeter (mS/cm) or microsiemens
	per centimeter (µS/cm)
рН	In the context of agriculture, pH refers to the measurement of the acidity or alkalinity of soil or water.
	It's a crucial factor influencing the availability of nutrients to plants and the overall health of crops.
	The pH scale ranges from 0 to 14, with 7 considered neutral. Values below 7 indicate acidity, while
	values above 7 indicate alkalinity. Different plants thrive in varying pH ranges, and maintaining the
	appropriate pH level in soil and water is essential for optimal plant growth.
Nitrate	Nitrate is a chemical compound composed of nitrogen and oxygen (NO ³⁻). It's a form of nitrogen
	essential for plant growth, serving as a vital nutrient required for the synthesis of amino acids, proteins, and chlorophyll.
	Nitrate is a primary source of nitrogen for plants, playing a critical role in their development and
	productivity. However, excessive nitrate levels in soil or water can lead to various agricultural and
	environmental issues.
Fecal	Fecal coliforms are bacteria found in the intestinal tracts of warm-blooded animals, including
Coliform	humans, and are commonly used as indicators of water and soil contamination.
Total	Total coliforms are a broad group of bacteria that inhabit various environments, including soil, water,
Coliform	and the intestines of warm-blooded animals. Total coliforms can be naturally occurring in the
	environment.
E. Coli	Escherichia coli (E. coli) is a bacterium commonly found in the intestines of warm-blooded animals,
	including humans. Its presence in water suggests that the water may be contaminated with
	pathogens (disease-causing organisms) from human or animal waste.
Phosphate	Phosphate is a crucial nutrient in agriculture that plays a fundamental role in plant growth and
	development. Phosphorus runoff from agricultural lands can contribute to water pollution in surface
	water bodies. When excess phosphorus enters these water sources, it can promote algal growth and eutrophication, causing harmful algal blooms.
Sulphate	Sulphate is a natural component found in water bodies, originating from the weathering of rocks and
ошрише	minerals. It's commonly present in groundwater and surface water sources. Sulfate in the soil
	contributes to overall soil fertility. Sulfur helps maintain soil pH and aids in the breakdown of organic
	matter, releasing other nutrients that plants require for growth. Insufficient sulfur levels can limit crop
	yields and quality.
Pesticides	There are three types of pesticide testing that is generally conducted in water samples,
	organophosphate pesticides, carbamate pesticides and organochlorine pesticides.
	Organophosphates can be measured through testing of phosphates in water. Carbamate pesticides
	serve as insecticides, nematicides, and arachnicides employed for pest management in agricultural
	crops, as well as for controlling insects in lawns and gardens. Their toxic nature stems from their capacity to function as enzyme cholinesterase inhibitors. Organochlorine pesticides are frequently
	found in waters impacted by agricultural runoff. These pesticides are known for their ability to
	accumulate in organisms over time and remain relatively stable. They also possess toxicity or
	carcinogenic properties.
	Specific pesticides that are recommended to be tested: Cypermathrin, Profenofos, Diazinon,
	Tebuconazole, Imidacloprid, Acetamiprid, Novaluron, Dinotefuran, Mancozeb, Azadirachtin,
	Copperoxychloride, Zabamec, Diafenthiuron, Propineb

Parameter	Description
Potassium	Potassium is an essential macronutrient for plant growth and agricultural productivity. Elevated levels of potassium in water sources are generally not a concern for human health. However, excessive potassium levels can contribute to increased water conductivity, affecting water quality indicators, especially in areas with intensive agricultural activities or excessive fertilizer application.
Ammonia	Ammonia (NH ₃) is a compound composed of nitrogen and hydrogen. Ammonia is used in the production of nitrogen-based fertilizers like ammonium nitrate and urea. These fertilizers provide a readily available nitrogen source for plants, aiding in their growth and development. Excessive ammonia in water bodies can negatively impact aquatic ecosystems, leading to toxicity for aquatic organisms like fish and altering the balance of the aquatic environment.

The specific pesticides that are recommended to be tested are shortlisted after checking the specific active ingredients in commonly used pesticide brands in Laamu Atoll as per the Baseline Report on Agricultural Practices in Laamu Atoll published by Ministry of Environment, Climate Change and Technology in 2023. However, it is recommended to do a broader range of pesticide testing for at least a few samples to ensure that no crucial specific pesticides are missed out on the shortlist of pesticides specified here.

Groundwater testing should be carried out **quarterly**, and ensure seasonal variations are recorded. The sample size should be determined based on island size, and number of agricultural plots. As a reference, from an area of 20,000 square meter of agricultural plots, at least 1 sample must be taken.

Sampling locations should be evenly distributed through the study area, and sampling points should be georeferenced. It is important to include a control sample to compare contamination levels between agricultural areas and other areas.

The sampling methodology should follow the quality control and quality assurance requirements set in Water Sampling Training Materials Report for sample collection, labelling, documentation, storage and transportation. Proper equipment for sample collection, handling, storage and transportation should be ensured, and personnel should be trained in proper sampling techniques to minimize contamination risks and maintain data integrity.

An accredited laboratory, laboratories with expertise in water quality testing and experience analyzing samples from similar environments, should be utilized for sample analysis.

All field data and analytical results should be compiled into a centralized database, and results compared to relevant national and international water quality standards. Tools such as Geographic Information Systems (GIS) should be utilized to map spatial variations in groundwater quality. Statistical analysis software such as SPSS or Microsoft Excel should be used to analyze data over time to identify trends or emerging issues.

In terms of reporting, comprehensive reports should be produced which include objectives, methodology, results, discussion, recommendations and conclusions. Data should be clearly presented in the form of tables, figures and maps. Report should be disseminated to relevant stakeholders, including government agencies, and atoll and island councils, and it should also be made accessible to the general public.